文章目录
- 一、unordered系列关联式容器
- 1.unordered_map
- (1)unordered_map的介绍
- (2)unordered_map的接口说明
- 2. unordered_set
- 3.性能对比
- 二、底层结构
- 1.哈希概念
- 2.哈希冲突
- 3.哈希函数
- 4.哈希冲突解决
- (1)闭散列(开放地址法)
- (2)开散列(哈希桶/开链法 - 常用)
- 三、模拟实现
- 四、哈希的应用
- 1.位图
- (1)位图概念
- (2)位图的实现
- (3)位图的应用
- 2.布隆过滤器
- (1)布隆过滤器的提出
- (2)布隆过滤器概念
- (3)布隆函数的插入
- (4)布隆过滤器的查找(重点)
- (5)布隆过滤器的删除
- (6)布隆过滤器的优点
- (7)布隆过滤器的缺陷
- 五、海量数据面试题
- 1.哈希切割
- 2.位图应用
- 3.布隆过滤器
一、unordered系列关联式容器
在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map
和unordered_set
进行介绍,unordered_multimap和unordered_multiset可查看文档介绍。
ordered - 有序的,unordered - 无序的。
1.unordered_map
(1)unordered_map的介绍
unordered_map文档
-
unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
-
在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
-
在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
-
unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
-
unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
-
它的迭代器至少是前向迭代器。
(2)unordered_map的接口说明
- unordered_map的构造
- unordered_map的容量
- unordered_map的迭代器(只支持单项迭代器)
- unordered_map的元素访问
- unordered_map的查询
- unordered_map的修改操作
- unordered_map的桶操作
略(可自行查看文档)
2. unordered_set
参见文档:unordered_set在线文档说明
3.性能对比
- 代码示例
#include<iostream>
#include<unordered_set>
#include<unordered_map>
#include <map>
#include <set>
#include<string>
using namespace std;#include <time.h>int main()
{const size_t N = 1000000;unordered_set<int> us;set<int> s;vector<int> v;v.reserve(N); //申请空间srand(time(0)); //随机值for (size_t i = 0; i < N; ++i){//v.push_back(rand());//v.push_back(rand()+i);v.push_back(i);}size_t begin1 = clock();for (auto e : v){s.insert(e);}size_t end1 = clock();cout << "set insert:" << end1 - begin1 << endl; size_t begin2 = clock();for (auto e : v){us.insert(e);}size_t end2 = clock();cout << "unordered_set insert:" << end2 - begin2 << endl; size_t begin3 = clock();for (auto e : v){s.find(e);}size_t end3 = clock();cout << "set find:" << end3 - begin3 << endl;size_t begin4 = clock();for (auto e : v){us.find(e);}size_t end4 = clock();cout << "unordered_set find:" << end4 - begin4 << endl; //对比可以发现unordered_set的find更快cout << s.size() << endl;cout << us.size() << endl;size_t begin5 = clock();for (auto e : v){s.erase(e);}size_t end5 = clock();cout << "set erase:" << end5 - begin5 << endl;size_t begin6 = clock();for (auto e : v){us.erase(e);}size_t end6 = clock();cout << "unordered_set erase:" << end6 - begin6 << endl;return 0;
}
- 结果示例
总结:unordered系列容器在 insert、erase上无明显优势,但是在查找(find)方面相较于原来的容器,性能大大提高。
二、底层结构
unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。
1.哈希概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素(哈希映射:key值跟储存位置建立关联关系)。
当向该结构中:
- 插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
- 搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?这就涉及到哈希冲突的问题了。
2.哈希冲突
对于两个数据元素的关键字 k i k_i ki和 k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
发生哈希冲突该如何处理呢?
3.哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:
- 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
- 哈希函数计算出来的地址能均匀分布在整个空间中
- 哈希函数应该比较简单
常见哈希函数
- 直接定址法–(常用)
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况 - 除留余数法–(常用)
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
4.哈希冲突解决
解决哈希冲突两种常见的方法是:闭散列
和开散列
(1)闭散列(开放地址法)
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?
1.线性探测
比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
- 插入
- 通过哈希函数获取待插入元素在哈希表中的位置
- 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
- 删除
- 采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。
- 比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE};
- 线性探测的实现
// 注意:假如实现的哈希表中元素唯一,即key相同的元素不再进行插入
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class K, class V>
class HashTable
{struct Elem{pair<K, V> _val;State _state;};public:HashTable(size_t capacity = 3): _ht(capacity), _size(0){for (size_t i = 0; i < capacity; ++i)_ht[i]._state = EMPTY;}bool Insert(const pair<K, V>& val){// 检测哈希表底层空间是否充足// _CheckCapacity();size_t hashAddr = HashFunc(key);// size_t startAddr = hashAddr;while (_ht[hashAddr]._state != EMPTY){if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first== key)return false;hashAddr++;if (hashAddr == _ht.capacity())hashAddr = 0;/*// 转一圈也没有找到,注意:动态哈希表,该种情况可以不用考虑,哈希表中元素个数到达一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是不会存满的if(hashAddr == startAddr)return false;*/}// 插入元素_ht[hashAddr]._state = EXIST;_ht[hashAddr]._val = val;_size++;return true;}int Find(const K& key){size_t hashAddr = HashFunc(key);while (_ht[hashAddr]._state != EMPTY){if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first== key)return hashAddr;hashAddr++;}return hashAddr;}bool Erase(const K & key){int index = Find(key);if (-1 != index){_ht[index]._state = DELETE;_size++;return true;}return false;}size_t Size()const;bool Empty() const;void Swap(HashTable<K, V, HF>&ht);
private:size_t HashFunc(const K & key){return key % _ht.capacity();}
private:vector<Elem> _ht;size_t _size;
};
- 思考:哈希表什么情况下进行扩容?如何扩容?
void CheckCapacity()
{if (_size * 10 / _ht.capacity() >= 7){HashTable<K, V, HF> newHt(GetNextPrime(ht.capacity));for (size_t i = 0; i < _ht.capacity(); ++i){if (_ht[i]._state == EXIST)newHt.Insert(_ht[i]._val);}Swap(newHt);}
}
负载因子越小,冲突概率越小,消耗空间越多。负载因子越大,冲突概率越大,空间利用率越高。
线性探测优点:实现非常简单。
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置(插入的数据占据了别的数据关键码对应的空间),使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。如何缓解呢?
2.二次探测
线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式o就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i = 1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。
我们可以将其理解为跳跃式查找空余位置的方法。
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
(2)开散列(哈希桶/开链法 - 常用)
1.开散列概念
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
将 44插入到容器中
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
2.开散列实现
template<class V>
struct HashBucketNode
{HashBucketNode(const V& data): _pNext(nullptr), _data(data){}HashBucketNode<V>* _pNext;V _data;
};// 本文所实现的哈希桶中key是唯一的
template<class V>
class HashBucket
{typedef HashBucketNode<V> Node;typedef Node* PNode;
public:HashBucket(size_t capacity = 3) : _size(0){_ht.resize(GetNextPrime(capacity), nullptr);}// 哈希桶中的元素不能重复PNode* Insert(const V& data){// 确认是否需要扩容。。。// _CheckCapacity();// 1. 计算元素所在的桶号size_t bucketNo = HashFunc(data);// 2. 检测该元素是否在桶中PNode pCur = _ht[bucketNo];while (pCur){if (pCur->_data == data)return pCur;pCur = pCur->_pNext;}// 3. 插入新元素pCur = new Node(data);pCur->_pNext = _ht[bucketNo];_ht[bucketNo] = pCur;_size++;return pCur;}// 删除哈希桶中为data的元素(data不会重复),返回删除元素的下一个节点PNode* Erase(const V& data){size_t bucketNo = HashFunc(data);PNode pCur = _ht[bucketNo];PNode pPrev = nullptr, pRet = nullptr;while (pCur){if (pCur->_data == data){if (pCur == _ht[bucketNo])_ht[bucketNo] = pCur->_pNext;elsepPrev->_pNext = pCur->_pNext;pRet = pCur->_pNext;delete pCur;_size--;return pRet;}}return nullptr;}PNode* Find(const V& data);size_t Size()const;bool Empty()const;void Clear();bool BucketCount()const;void Swap(HashBucket<V, HF>& ht;~HashBucket();
private:size_t HashFunc(const V& data){return data % _ht.capacity();}
private:vector<PNode*> _ht;size_t _size; // 哈希表中有效元素的个数
};
3.开散列增容
桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。
void _CheckCapacity()
{size_t bucketCount = BucketCount();if (_size == bucketCount){HashBucket<V, HF> newHt(bucketCount);for (size_t bucketIdx = 0; bucketIdx < bucketCount; ++bucketIdx){PNode pCur = _ht[bucketIdx];while (pCur){// 将该节点从原哈希表中拆出来_ht[bucketIdx] = pCur->_pNext;// 将该节点插入到新哈希表中size_t bucketNo = newHt.HashFunc(pCur->_data);pCur->_pNext = newHt._ht[bucketNo];newHt._ht[bucketNo] = pCur;pCur = _ht[bucketIdx];}}newHt._size = _size;this->Swap(newHt);}
}
4.开散列的思考
- 只能存储key为整形的元素,其他类型怎么解决?
// 哈希函数采用处理余数法,被模的key必须要为整形才可以处理,此处提供将key转化为
整形的方法
// 整形数据不需要转化
template<class T>
class DefHashF
{
public:size_t operator()(const T& val){return val;}
};// key为字符串类型,需要将其转化为整形
class Str2Int
{
public:size_t operator()(const string& s){const char* str = s.c_str();unsigned int seed = 131; // 31 131 1313 13131 131313unsigned int hash = 0;while (*str){hash = hash * seed + (*str++);}return (hash & 0x7FFFFFFF);}
};// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class V, class HF>
class HashBucket
{// ……
private:size_t HashFunc(const V& data){return HF()(data.first) % _ht.capacity();}
};
- 除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?
略(有固定的prime语法)
5.开散列与闭散列比较
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。
三、模拟实现
略
四、哈希的应用
1.位图
(1)位图概念
1.面试题
给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在
这40亿个数中。【腾讯】
-
遍历,时间复杂度O(N)
-
排序(O(NlogN)),利用二分查找: logN
-
位图解决
-
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
-
图一:
-
2.位图概念
所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。
(2)位图的实现
namespace Bitmap
{template<size_t N>class Bitmapset{public:bitset(){//_bits.resize(N/8+1, 0);_bits.resize((N >> 3) + 1, 0);}// 将x比特位置1void set(size_t x){//size_t i = x / 8;size_t i = x >> 3;size_t j = x % 8;_bits[i] |= (1 << j);}// 将x比特位置0void reset(size_t x){size_t i = x >> 3;size_t j = x % 8;_bits[i] &= (~(1 << j));}// 检测位图中x是否为1bool test(size_t x){size_t i = x >> 3;size_t j = x % 8;return _bits[i] & (1 << j);}private:vector<char> _bits;};void test_bitset(){//bitset<100> bs1;//bitset<-1> bs2;bitset<0xffffffff> bs2;bs2.set(10);bs2.set(10000);bs2.set(8888);cout << bs2.test(10) << endl;cout << bs2.test(10000) << endl;cout << bs2.test(8888) << endl;cout << bs2.test(8887) << endl;cout << bs2.test(9999) << endl << endl;bs2.reset(8888);bs2.set(8887);cout << bs2.test(10) << endl;cout << bs2.test(10000) << endl;cout << bs2.test(8888) << endl;cout << bs2.test(8887) << endl;cout << bs2.test(9999) << endl;}}
(3)位图的应用
- 快速查找某个数据是否在一个集合中
- 排序 + 去重
- 求两个集合的交集、并集等
- 操作系统中磁盘块标记
2.布隆过滤器
(1)布隆过滤器的提出
我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查找呢?
-
用哈希表存储用户记录,缺点:浪费空间
-
用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
-
将哈希与位图结合,即布隆过滤器
(2)布隆过滤器概念
布隆过滤器
是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。
(3)布隆函数的插入
- 向布隆过滤器中插入:“baidu”,将一个元素用多个哈希函数转成一个整形映射到一个位图中,被映射到的位置的比特位由0修改为1
struct BKDRHash
{size_t operator()(const string& s){// BKDRsize_t value = 0;for (auto ch : s){value *= 31;value += ch;}return value;}
};struct APHash
{size_t operator()(const string& s){size_t hash = 0;for (long i = 0; i < s.size(); i++){if ((i & 1) == 0){hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));}}return hash;}
};struct DJBHash
{size_t operator()(const string& s){size_t hash = 5381;for (auto ch : s){hash += (hash << 5) + ch;}return hash;}
};template<size_t N,size_t X = 5,class K = string,class HashFunc1 = BKDRHash,class HashFunc2 = APHash,class HashFunc3 = DJBHash>class BloomFilter
{
public:void Set(const K& key){size_t len = X * N;size_t index1 = HashFunc1()(key) % len;size_t index2 = HashFunc2()(key) % len;size_t index3 = HashFunc3()(key) % len;/* cout << index1 << endl;cout << index2 << endl;cout << index3 << endl<<endl;*/_bs.set(index1);_bs.set(index2);_bs.set(index3);}bool Test(const K& key){size_t len = X * N;size_t index1 = HashFunc1()(key) % len;if (_bs.test(index1) == false)return false;size_t index2 = HashFunc2()(key) % len;if (_bs.test(index2) == false)return false;size_t index3 = HashFunc3()(key) % len;if (_bs.test(index3) == false)return false;return true; // 存在误判的}// 不支持删除,删除可能会影响其他值。void Reset(const K& key);private:bitset<X* N> _bs;
};
(4)布隆过滤器的查找(重点)
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1
**。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
(5)布隆过滤器的删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
缺陷:
- 无法确认元素是否真正在布隆过滤器中
- 存在计数回绕
(6)布隆过滤器的优点
-
增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
-
哈希函数相互之间没有关系,方便硬件并行运算
-
布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
-
在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
-
数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
-
使用同一组散列函数的布隆过滤器可以进行交、并、差运算
(7)布隆过滤器的缺陷
-
有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
-
不能获取元素本身
-
一般情况下不能从布隆过滤器中删除元素
-
如果采用计数方式删除,可能会存在计数回绕问题
五、海量数据面试题
1.哈希切割
(1)给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?
思路:将大文件通过哈希切割成小文件,此时同一个ip只会在同一个小文件中。找出1号小文件中出现次数最多的ip,将它拿出来和2、3…号出现最多的ip进行比较,最后将出现次数最多的ip返回
(2)与上题条件相同,如何找到top K的IP?如何直接用Linux系统命令实现?
思路:在上题的基础上再引入一个堆即可
2.位图应用
(1)给定100亿个整数,设计算法找到只出现一次的整数?
思路:可以开多个位图进行对应组合,我们可以用00,01,10来表示某个数没有出现、出现一次、出现一次以上,此时只需要创建三个位图并将它们对应起来即可。
(2)给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集?
思路:
(3)位图应用变形:1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数
思路:设计一个位图,给对应的数据增加状态标识
3.布隆过滤器
(1)给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
思路:把其中一个文件放到布隆过滤器中,再用另一个文件去里面找一下,交集一定会在里面,也可能误判(近似算法)。对两个文件进行切割处理,再对比。
(2)如何扩展BloomFilter使得它支持删除元素的操作
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
🌹🌹 哈希 的知识大概就讲到这里啦,博主后续会继续更新更多C++ 和 Linux的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪