光谱图像超分辨率综述

光谱图像超分辨率综述

简介

​ 论文链接:A Review of Hyperspectral Image Super-Resolution Based on Deep Learning

2023-11-20_12-14-10

UpSample网络框架

1.Front-end Upsampling

​ 在Front-end上采样中,是首先扩大LR图像,然后通过卷积网络对放大图像进行优化。如"Image Super-Resolution Using Deep Convolutional Networks"(SRCNN)中,首先使用bicubic对图像进行放大,再采用卷积进行处理。

​ 缺点:

  1. 由于先进行上采样,再进行其他操作,根据上采样倍数的不同,导致卷积部分计算量巨大
  2. 直接进行上采样,可能将LR图像中的噪声放大,导致超分结果不理想。

2023-11-20_15-13-54

2.Back-end Upsamling

​ 为了降低计算成本,充分利用神经网络的学习能力,将Upsample层放到模型后端进行操作。也就是先通过神经网络对LR图像特征进行提取,减弱噪声部分影响,再采用上采样操作对图像进行超分辨率。如"Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network".(ESPCN),先使用卷积层进行LR图像的特征提取,再采用提出的Pixelshuffle模块——亚像素卷积层(sub-pixelconvolutionlayer)进行上采样得到重建图像。

缺点:

  1. 由于只进行一次上采样操作,对于较大缩放因子,仍然不是一个好的选择。

2023-11-20_15-15-00

3.Progressive Upsampling

​ 解决缩放因子较大时的问题,通过将其拆分为几个子任务进行解决。

缺点:网络结构更加复杂

2023-11-20_15-15-09

Upsample方法

1.基于插值的方法

  1. Nearest-neighbor Interpolation
  2. Bilinear Interpolation:没有考虑相邻像素之间灰度值变化率的影响,从而破坏了插值图像的高频信息,经常得到模糊图像边缘
  3. Bicubic Interpolation:考虑了四个最近像素的灰度值的影响,同时也考虑了周围灰度值变化率的影响,从而获得比前两种插值方法更平滑的边缘、更少的伪影和更少的丢失图像信息,但是其计算量巨大。

2.Transposed Convolution转置卷积

import torch
import torch.nn as nnnn.ConvTranspose2d()#函数定义
def __init__(self,in_channels: int,out_channels: int,kernel_size: Union[int, Tuple[int, int]],stride: Union[int, Tuple[int, int]] = 1,padding: Union[int, Tuple[int, int]] = 0,output_padding: Union[int, Tuple[int, int]] = 0,groups: int = 1,bias: bool = True,dilation: Union[int, Tuple[int, int]] = 1,padding_mode: str = 'zeros',device: Any = None,dtype: Any = None) -> None

2023-11-20_15-33-24

3.Pixel Shuffle

import torch
import torch.nn as nn
self.ps = nn.PixelShuffle(8)
#8为上采样因子,需要注意的是用其处理时,首先需要使用卷积调整channel维度,使其满足为采样因子平方的倍数

2023-11-20_15-33-56

常见网络结构

2023-11-20_15-38-55

1.残差学习

引人残差网络,方便加深网络,避免梯度消失

2.递归学习

所有残差单元共享相同的权重,大大减少了模型参数的数量。同时,递归学习固有地引入了梯度消失或梯度爆炸的问题因此将残差学习与递归学习相结合是明智的选择。

3.多路径学习

通过将图像输入到不同路径进行特征提取,方便提取多个维度的特征,可以使得特征之间的细节有效互补

4.注意力机制

采用channel attention以及spatial attention,可以分别学习channel维度(频段维度),spatial维度(空间维度hw)之间特定的信息,用于保留输入图像的关键空间信息以及频段信息。

5.密集连接

密集连接最重要的特点是能够重用包括低级特征和高级特征在内的特征,与普通skip connection相比,这是一个优越的方面。

损失计算

1.Pixel-wise损失

像素级别的损失,常见的是L1损失和L2损失,它们都是逐像素进行误差计算。

与L1损失相比,L2损失可以有力地处理较大的误差,但不能对较小的误差进行有效的惩罚,因此经常导致结果过于平滑。这使得L1损耗在大多数情况下是更好的选择。

图像评价指标

  1. PSNR:峰值信噪比,侧重于像素之间的差异,也就是重建的像素与像素之间的差异,无法对主观感知信息进行较好评估。
  2. SSIM:结构相似度,人类的主观感知对观察对象的结构很敏感,研究人员提出了结构相似性 (SSIM) 指数来衡量标记图像和重建图像之间的结构相似性。它的评估基于图像结构,比PSNR更能考虑视觉感知。使用SSIM下的结果更符合人类的主观感受
  3. SAM:将HSI的每个图像元素的频谱视为高维向量,通过计算对应向量之间的角度来测量光谱相似度。角度越小,它属于同一类型特征的可能性就越大。在执行分类任务时,通过计算未知向量与已知向量之间的谱角的大小来识别未知图像元素的类。
  4. 详细请见光谱图像常见评价指标-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153407.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

竞赛 题目:基于深度学习的中文汉字识别 - 深度学习 卷积神经网络 机器视觉 OCR

文章目录 0 简介1 数据集合2 网络构建3 模型训练4 模型性能评估5 文字预测6 最后 0 简介 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的中文汉字识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! &a…

什么是媒体见证?媒体宣传有哪些好处?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 一,什么是媒体见证? 媒体见证是指企业举办活动,发布会,邀请媒体现场采访的一种宣传方式,媒体到场后,对其进行记录…

lenovo联想笔记本ThinkPad P1 Gen5/X1 Extreme Gen5原装出厂Windows11预装OEM系统

链接:https://pan.baidu.com/s/13E97Nwc-0-N7ffPjEeeeOw?pwdep4l 提取码:ep41 原装出厂系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等预装程序 所需要工具:32G或以上的U盘 文件格式:ISO 文件大小&#xff…

Java实现俄罗斯方块游戏

俄罗斯方块游戏本身的逻辑: 俄罗斯方块游戏的逻辑是比较简单的。它就类似于堆砌房子一样,各种各样的方地形状是不同的。但是,俄罗斯方块游戏的界面被等均的分为若干行和若干列,因此方块的本质就是占用了多少个单元。 首先来考虑…

解决 Python requests 库中 SSL 错误转换为 Timeouts 问题

解决 Python requests 库中 SSL 错误转换为 Timeouts 问题:理解和处理 SSL 错误的关键 在使用Python的requests库进行HTTPS请求时,可能会遇到SSL错误,这些错误包括但不限于证书不匹配、SSL层出现问题等。如果在requests库中设置verifyFalse&…

《向量数据库指南》——Range Search 使用方法和参数检查

Range Search 使用方法 如需使用 Range Search,只需要修改搜索请求中的搜索参数。接下来我会讲一下的详细使用指南,在指南的最后还提供了 Python 示例代码。 开始前 请确保已安装并运行 Milvus Cloud。请确保已创建 1 个 Collection,并为该 Collection 创建索引。 Ra…

【LeetCode:2216. 美化数组的最少删除数 | 贪心】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

掌握源码,轻松搭建:一站式建站系统源码 附完整搭建步骤与教程

随着互联网的快速发展,网站已成为人们生活中不可或缺的一部分。然而,对于许多初学者或中小企业来说,搭建一个完整的网站系统并非易事。这涉及到前端和后端的开发、数据库管理等多个环节。为了解决这一痛点,我们推出了一站式建站系…

sortablejs拖拽后新增和删除行时顺序错乱

问题描述:如下图所示,使用sortablejs拖拽后,在序号2后新增行会出现新增行跑到第一行的错误顺序。 解决:在进行拖拽后,对表格数据进行清空重新赋值。

一种可度量的测试体系-精准测试

行业现状 软件行业长期存在一个痛点,即测试效果无法度量。通常依赖于测试人员的能力和经验,测试结果往往不可控,极端情况下同一个业务功能,即使是同一个人员在不同的时间段,测试场景和过程也可能不一致,从而…

抖音电商双11官方数据最全汇总!

11月13日,抖音电商数据发布“抖音商城双11好物节”数据报告,展现双11期间平台全域经营情况及大众消费趋势。 报告显示,10月20日至11月11日,抖音电商里的直播间累计直播时长达到5827万小时,挂购物车的短视频播放了1697亿…

第十一篇 基于JSP 技术的网上购书系统——产品类别管理、评论/留言管理、注册用户管理、新闻管理功能实现(网上商城、仿淘宝、当当、亚马逊)

目录 1.产品类别管理 1.1功能说明 1.2界面设计 1.3处理流程 1.4数据来源和算法 1.4.1数据来源 1.4.2 查询条件 1.4.3相关sql实例 2. 评论/留言管理 2.1功能说明 2.2 界面设计 2.3处理流程 2.4数据来源和算法 2.4.1数据来源 2.4.2 查询条件 2.4.3相关sql实例…

vue3 使用simplebar【滚动条】

1.下载simplebar-vue npm install simplebar-vue --save2.引入注册 import simplebar from "simplebar-vue"; import simplebar-vue/dist/simplebar.min.css import simplebar-vue/dist/simplebar-vue.jsvue2的版本基础上 【引入注册】 import simplebar from &qu…

IDEA 搭建 SpringCloud 项目【超详细步骤】

文章目录 一、前言二、项目搭建1. 数据库准备2. 创建父工程3. 创建注册中心4. 服务注册5. 编写业务代码6. 服务拉取 一、前言 所谓微服务,就是要把整个业务模块拆分成多个各司其职的小模块,做到单一职责原则,不会重复开发相同的业务代码&…

数据预处理pandas pd.json_normalize占用内存过大优化

问题描述 从ES下载数据,数据格式为json,然后由pandas进行解析,json中的嵌套字段会进行展开作为列名(由于维度初期无法预测,所以根据数据有啥列就使用啥列,这是最方便的点),变成表格,方面了后续…

电脑开不了机怎么办?三招帮你成功解决!

电脑是我们日常工作和生活的重要工具,但有时候它们也会出现开机问题。当电脑无法启动时,可能会让人感到焦虑,电脑开不了机怎么办?不必担心,通常有多种方法可以解决这些问题。本文将介绍三种常见的方法,以帮…

【广州华锐互动】VR虚拟现实技术助力太空探险:穿越时空,探索宇宙奥秘

随着科技的不断发展,虚拟现实(VR)技术已经逐渐走进我们的生活。在教育领域,VR技术的应用也日益广泛,为学生提供了更加生动、直观的学习体验。本文将以利用VR开展太空探险学习为主题,探讨如何将这一先进技术…

提升办公效率,畅享多功能办公笔记软件Notion for Mac

在现代办公环境中,高效的笔记软件对于提高工作效率至关重要。而Notion for Mac作为一款全能的办公笔记软件,将成为你事业成功的得力助手。 Notion for Mac以其多功能和灵活性而脱颖而出。无论你是需要记录会议笔记、管理项目任务、制定流程指南&#xf…

基于springboot实现冬奥会科普平台系统【项目源码+论文说明】计算机毕业设计

基于SpringBoot实现冬奥会科普平台系统演示 摘要 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理平台应运而生&…