Python将原始数据集和标注文件进行数据增强(随机仿射变换),并生成随机仿射变换的数据集和标注文件

Python将原始数据集和标注文件进行数据增强(随机仿射变换),并生成随机仿射变换的数据集和标注文件

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 生成随机仿射变换的数据集和标注文件
    • 代码实现
    • 输出结果

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{"version": "4.5.6","flags": {},"shapes": [{"label": "dog","points": [[121.0,233.0],[223.0,232.0],[246.0,334.0],[121.0,337.0]],"group_id": null,"shape_type": "polygon","flags": {}}],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "img_001.jpg","imageData": "iVBORw0KGgoAAAANSUhEUgAA...","imageHeight": 600,"imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

生成随机仿射变换的数据集和标注文件

  • 背景:将标注好的数据集,随机仿射变换,以达到数据增强的目的。
  • 目录结构示例
    在这里插入图片描述

在这里插入图片描述

  • images:原始图片数据集所在的文件夹。
  • jsons:原始Labelme标注文件所在的文件夹。

在这里插入图片描述

{"version": "5.2.0.post4","flags": {},"shapes": [{"label": "cat","points": [[161.0612244897959,152.265306122449],[610.0408163265306,399.7142857142857]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}}],"imagePath": "cat.png","imageData": null,"imageHeight": 478,"imageWidth": 766
}

在这里插入图片描述

{"version": "5.2.0.post4","flags": {},"shapes": [{"label": "flower","points": [[301.9230769230769,19.52747252747254],[452.4725274725275,168.42857142857144]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}},{"label": "flower","points": [[378.2967032967033,183.81318681318683],[529.3956043956044,364.032967032967]],"group_id": null,"description": null,"shape_type": "rectangle","flags": {}}],"imagePath": "flower.png","imageData": null,"imageHeight": 394,"imageWidth": 850
}

在这里插入图片描述

{"version": "5.2.0.post4","flags": {},"shapes": [{"label": "swan","points": [[147.76178010471205,212.01570680628274],[294.88219895287955,476.93717277486905]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}},{"label": "swan","points": [[271.8455497382199,243.42931937172776],[342.0026178010471,322.4869109947644]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}},{"label": "swan","points": [[305.35340314136124,215.6806282722513],[394.3586387434555,421.4397905759162]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}},{"label": "swan","points": [[549.8560209424083,202.59162303664922],[655.0916230366491,345.52356020942403]],"group_id": null,"description": "","shape_type": "rectangle","flags": {}}],"imagePath": "swan.png","imageData": null,"imageHeight": 490,"imageWidth": 795
}

代码实现

import os
import cv2
import math
import json
import random
import numpy as npdef random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,border=(0, 0)):# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))# targets = [cls, xyxy]height = im.shape[0] + border[0] * 2  # shape(h,w,c)width = im.shape[1] + border[1] * 2# CenterC = np.eye(3)C[0, 2] = -im.shape[1] / 2  # x translation (pixels)C[1, 2] = -im.shape[0] / 2  # y translation (pixels)# PerspectiveP = np.eye(3)P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)# Rotation and ScaleR = np.eye(3)a = random.uniform(-degrees, degrees)# a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotationss = random.uniform(1 - scale, 1 + scale)# s = 2 ** random.uniform(-scale, scale)R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)# ShearS = np.eye(3)S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)# TranslationT = np.eye(3)T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)# Combined rotation matrixM = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANTif (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changedif perspective:im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))else:  # affineim = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))# Visualize# import matplotlib.pyplot as plt# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()# ax[0].imshow(im[:, :, ::-1])  # base# ax[1].imshow(im2[:, :, ::-1])  # warped# Transform label coordinatesn = len(targets)if n:use_segments = any(x.any() for x in segments)new = np.zeros((n, 4))# warp boxesxy = np.ones((n * 4, 3))xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1xy = xy @ M.T  # transformxy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine# create new boxesx = xy[:, [0, 2, 4, 6]]y = xy[:, [1, 3, 5, 7]]new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T# clipnew[:, [0, 2]] = new[:, [0, 2]].clip(0, width)new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)# filter candidatesi = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)targets = targets[i]targets[:, 1:5] = new[i]return im, targetsdef box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratiow1, h1 = box1[2] - box1[0], box1[3] - box1[1]w2, h2 = box2[2] - box2[0], box2[3] - box2[1]ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratioreturn (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates# 图像显示函数
def show(name, img):cv2.namedWindow(name, 0)  # 用来创建指定名称的窗口,0表示CV_WINDOW_NORMAL# cv2.resizeWindow(name, img.shape[1], img.shape[0]); # 设置宽高大小为640*480cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()def xyxy2xminyminxmaxymax(rect):'''(x1,y1,x2,y2)  -> (xmin,ymin,xmax,ymax)'''xmin = min(rect[0],rect[2])ymin = min(rect[1],rect[3])xmax = max(rect[0],rect[2])ymax = max(rect[1],rect[3])return xmin,ymin,xmax,ymaxdef read_img_json(in_img_path,in_json_path):label_map = {'cat':0,'flower':1,'swan':2}img = cv2.imread(in_img_path)with open(in_json_path, "r", encoding='utf-8') as f:# json.load数据到变量json_datajson_data = json.load(f)labels = []# print(json_data['shapes'])# 读取原始jsons的 [[x1,y1],[x2,y2]]for i in json_data['shapes']:label = label_map[i['label']]rect = int(i['points'][0][0]),int(i['points'][0][1]),int(i['points'][1][0]),int(i['points'][1][1]) # x1,y1,x2,y2xmin,ymin,xmax,ymax = xyxy2xminyminxmaxymax(rect)labels.append([label,xmin,ymin,xmax,ymax])return img, np.array(labels)def write_img_json(img_array,img_targets,out_img_name,out_img_path,out_json_path):json_dict = {"version": "4.5.6","flags": {},"shapes": [],}label_map = {0:'cat',1:'flower',2:'swan'}cv2.imwrite(out_img_path,img_array)new_img_height,new_img_width = img_array.shape[0],img_array.shape[1]for i in img_targets:label = label_map[i[0]]box = i[1:]shapes_dict = {'label': '', 'points': [], # [[x1,y1],[x2,y2]]'group_id': None, 'shape_type': 'rectangle', 'flags': {}}shapes_dict['label'] = label'''将 numpy int32 对象传递给 json.dumps() 方法,但该方法默认不处理 numpy integers。要解决该错误,请在序列化之前使用内置的 int()或 float()函数将 numpy int32 对象转换为Python integex1,y1,x2,y2 = box'''x1,y1,x2,y2 = int(box[0]),int(box[1]),int(box[2]),int(box[3])shapes_dict['points'] = [[x1,y1],[x2,y2]]json_dict['shapes'].append(shapes_dict)'''写新的json文件'''json_dict["imagePath"] = out_img_namejson_dict["imageData"] = Nonejson_dict["imageHeight"] = new_img_heightjson_dict["imageWidth"] = new_img_width# 创建一个写文件with open(out_json_path, "w", encoding='utf-8') as f:# 将修改后的数据写入文件f.write(json.dumps(json_dict))if __name__=="__main__":# 输出图片所在文件夹out_imgs_dir  = 'out_images/'# 输出jsons所在文件夹out_jsons_dir = 'out_jsons/'if not os.path.exists(out_imgs_dir):os.mkdir(out_imgs_dir)if not os.path.exists(out_jsons_dir):os.mkdir(out_jsons_dir)# 输入图片所在文件夹in_imgs_dir  = 'images/'# 输入jsons所在文件夹in_jsons_dir = 'jsons/'# 输入图片名列表file_name_list = os.listdir(in_imgs_dir)img_name_list = [i for i in file_name_list if i.endswith('.png')]# 输入jsons文件名列表file_name_list = os.listdir(in_jsons_dir)json_name_list = [i for i in file_name_list if i.endswith('.json')]# print(img_name_list,json_name_list)# 定义剪裁图片的左右填充数pad = 0for img_name,json_name in zip(img_name_list,json_name_list):in_img_path = os.path.join(in_imgs_dir,img_name)out_img_path = os.path.join(out_imgs_dir,img_name)in_json_path = os.path.join(in_jsons_dir,json_name)out_json_path = os.path.join(out_jsons_dir,json_name)# 原始图片和标注信息labels = [[label,xmin,ymin,xmax,ymax]]img,labels = read_img_json(in_img_path,in_json_path)# print(img,labels)# 随机仿射后的图片和标注信息targets = [[label,xmin,ymin,xmax,ymax]]img_res,targets = random_perspective(img,labels)# print(img_res,targets)write_img_json(img_res,targets,img_name,out_img_path,out_json_path)

输出结果

在这里插入图片描述

  • out_images:随机仿射变换后的图片所在的文件夹。
  • out_jsons:随机仿射变换后的Labelme标注文件所在的文件夹。

在这里插入图片描述

{"version": "4.5.6","flags": {},"shapes": [{"label": "cat","points": [[211,94],[700,374]],"group_id": null,"shape_type": "rectangle","flags": {}}],"imagePath": "cat.png","imageData": null,"imageHeight": 478,"imageWidth": 766
}

在这里插入图片描述

{"version": "4.5.6","flags": {},"shapes": [{"label": "flower","points": [[266,49],[421,193]],"group_id": null,"shape_type": "rectangle","flags": {}},{"label": "flower","points": [[355,205],[515,379]],"group_id": null,"shape_type": "rectangle","flags": {}}],"imagePath": "flower.png","imageData": null,"imageHeight": 394,"imageWidth": 850
}

在这里插入图片描述

{"version": "4.5.6","flags": {},"shapes": [{"label": "swan","points": [[202,135],[363,417]],"group_id": null,"shape_type": "rectangle","flags": {}},{"label": "swan","points": [[329,182],[404,269]],"group_id": null,"shape_type": "rectangle","flags": {}},{"label": "swan","points": [[362,158],[461,374]],"group_id": null,"shape_type": "rectangle","flags": {}},{"label": "swan","points": [[607,175],[721,331]],"group_id": null,"shape_type": "rectangle","flags": {}}],"imagePath": "swan.png","imageData": null,"imageHeight": 490,"imageWidth": 795
}
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152568.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV快速入门:图像滤波与边缘检测

文章目录 前言一、噪声种类与生成1.1 椒盐噪声1.2 高斯噪声1.3 彩色噪声 二、卷积操作2.1 卷积基本原理2.2 卷积操作代码实现 三、线性滤波3.1 均值滤波均值滤波原理均值滤波公式均值滤波代码实现 3.2 方框滤波方框滤波原理方框滤波公式方框滤波代码实现 3.3 高斯滤波高斯滤波原…

redis非关系型数据库(缓存型数据库)——中间件

【重点】redis为什么这么快&#xff1f;&#xff08;应届&#xff09; ①redis是纯内存结构&#xff0c;避免磁盘I/O的耗时 ②redis核心模块是一个单进程&#xff0c;减少线程切换和回收线程资源时间 ③redis采用的是I/O的多路复用机制&#xff08;每一个执行线路可以同时完…

npm install 下载不下来依赖解决方案

背景 最近在构建 前端自动化部署 的方案中发现了一个问题&#xff0c;就是我在npm install的时候&#xff0c;有时候成功&#xff0c;有时候不成功&#xff0c;而且什么代码也没发生更改&#xff0c;报错也就是那么几个错&#xff0c;所以在此也整理了一下遇到这种情况&#xf…

如何使用 WPF 应用程序连接 FastReport报表

随着期待已久的FastReport WPF的发布&#xff0c;您不再需要使用 FastReport .NET 来处理基于 WPF 的项目。 不久前&#xff0c;在 FastReport .NET 中使用 WPF 还相当不方便。并非一切都进展顺利&#xff1b;连接 FastReport.dll 和许多其他问题存在问题。我们重新思考了该方…

2023年中职“网络安全“—Web 渗透测试①

2023年中职"网络安全"—Web 渗透测试① Web 渗透测试任务环境说明&#xff1a;1.访问地址http://靶机IP/task1&#xff0c;分析页面内容&#xff0c;获取flag值&#xff0c;Flag格式为flag{xxx}&#xff1b;2.访问地址http://靶机IP/task2&#xff0c;访问登录页面。…

面试题c/c++--语言基础

一 、语言基础 1.1 指针 野指针&#xff1a;指针指向的位置是不可知的 悬空指针&#xff1a;指针最初指向的内存已经被释放了的一种指针 两种指针都指向无效内存空间&#xff0c; 即不安全不可控 。需要在定义指针后且在使用之前完成初始化或者使用 智能指针来避免 智能指针 智…

获取阿里云Docker镜像加速器

1、阿里云官网&#xff08;www.aliyun.com&#xff09;注册账号 2、打开“控制台首页” 控制台首页地址&#xff1a;https://home.console.aliyun.com/home/dashboard/ProductAndService 3、点击“概览->容器镜像服务 ACR” 4、打开“镜像工具->镜像加速器”页面&#x…

【grafana | clickhouse】实现展示多折线图

说明&#xff1a; 采用的是 Visualizations 的 Time series&#xff0c;使用的 clickhouse 数据源 在工作中遇到了一个需求&#xff0c;写好了代码&#xff0c;需要在grafana上展示在一个项目中所有人的&#xff0c;随时间的代码提交量变化图 目前遇到的问题&#xff1a;展示…

FFmpeg常用命令行讲解及实战一

文章目录 前言一、学习资料参考二、FFmpeg 选项1、主要选项①、主要命令选项②、举例 2、视频选项①、主要命令选项②、举例1&#xff09;提取固定帧2&#xff09;禁止输出视频3&#xff09;指定视频的纵横比 3、音频选项①、主要命令选项②、举例 4、字幕选项①、主要命令选项…

负载均衡简介

负载均衡 负载均衡&#xff08;Load Balance&#xff0c;简称 LB&#xff09;是高并发、高可用系统必不可少的关键组件&#xff0c;目标是 尽力将网络流量平均分发到多个服务器上&#xff0c;以提高系统整体的响应速度和可用性。 负载均衡的分类和OSI模型息息相关&#xff0c…

【CHI】Ordering保序

本节介绍CHI协议所包含的支持系统保序需求的机制&#xff0c;包括&#xff1a; • Multi-copy atomicity • Completion response and ordering • Completion acknowledgment • Transaction ordering 一、 Multi-copy atomicity CHI协议中所使用的memory model要求为mu…

【面试经典150 | 数学】Pow(x, n)

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;快速幂-递归方法二&#xff1a;快速幂-迭代 其他语言python3 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主…

王者荣耀游戏

游戏运行如下&#xff1a; sxt Background package sxt;import java.awt.*; //背景类 public class Background extends GameObject{public Background(GameFrame gameFrame) {super(gameFrame);}Image bg Toolkit.getDefaultToolkit().getImage("C:\\Users\\24465\\D…

5分钟教你轻松搭建Web自动化测试框架

在程序员的世界中&#xff0c;一切重复性的工作&#xff0c;都应该通过程序自动执行。「自动化测试」就是一个最好的例子。 随着互联网应用开发周期越来越短&#xff0c;迭代速度越来越快&#xff0c;只会点点点&#xff0c;不懂开发的手工测试&#xff0c;已经无法满足如今的…

3.8-镜像的发布

如果我们想将image push到docker hub里面&#xff0c;那么我们的image的名字一定要是这种格式&#xff1a;docker hub id/imageName&#xff0c;例如&#xff1a;lvdapiaoliang/hello-docker docker hub个人账户设置地址&#xff1a; 在push之前要先登录&#xff1a; docker l…

数学建模值TOPSIS法及代码

TOPSIS法 TOPSIS法简称为优劣距离解法&#xff0c;是一种常见法综合评价方法&#xff0c;其能充分利用原始数据的信息&#xff0c;其结果能精确地反映各个评价方案之间的差距。 模型介绍 上篇文章谈到的层次分析法是有局限性的。比如评价的决策层不能太多&#xff0c;太多的…

ISP--Black Level Correction(黑电平矫正)

图像的每一个像素点都是由一个光电二极管控制的&#xff0c;由二极管将电信号&#xff0c;转换为数字信号。 那么&#xff0c;我们知道了&#xff0c;图像的像素值是与电信号强度相关的。但是&#xff0c;我们得知道&#xff0c;每一个光电二极管要想工作&#xff0c;都得有一定…

Three.js相机模拟

有没有想过如何在 3D Web 应用程序中模拟物理相机? 在这篇博文中,我将向你展示如何使用 Three.js和 OpenCV 来完成此操作。 我们将从模拟针孔相机模型开始,然后添加真实的镜头畸变。 具体来说,我们将仔细研究 OpenCV 的两个失真模型,并使用后处理着色器复制它们。 拥有逼…

C/C++最大质因子 2021年12月电子学会中小学生软件编程(C/C++)等级考试一级真题答案解析

目录 C/C最大质因子 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C最大质因子 一、题目要求 1、编程实现 质因子是指能整除给定正整数的质数。而最大质因子是指一个整数的所有质因子中最大的那个。…

开源集群管理系统对比分析:Kubernetes 与 Apache Mesos

集群管理系统是关键的软件解决方案&#xff0c;可以在互连机器网络中有效分配和利用计算资源。毫无疑问&#xff0c;它们通过确保可扩展性、高可用性和有效的资源管理在现代计算中发挥着至关重要的作用&#xff0c;这使得它们对于运行复杂的应用程序、管理数据中心以及进一步增…