从服务器端获取人脸数据,在本地检测特征,并将特征发送给服务器

目录

1.定义函数get_database_process:        

2.定义函数features_construct:

3.定义函数send_features_data:

4. 定义函数database_features_construct:

5. main 函数


1.定义函数get_database_process:        

        首先,发送一条消息,告知服务器端要进行人脸数据库特征构建

message_to_send = {'message': 'get_database_face', 'data': 0}

        然后就等待接收 服务端发送的数据,并将数据存储在多进程队列result_queue 中,等待检测函数获取。

        接收数据格式:

{”name“: 姓名, "image": 图片}

def receive_send(client_socket, result_queue):"""接收服务器端 receive_data信息,若成功接收则发送success 否则发送 failure并将信息存储在result_queue 中Args:client_socket:"""receive_data = client_socket.recv(4096000)receive_data = receive_data.decode('utf-8')if len(receive_data):feedback_data = 'success'client_socket.sendall(feedback_data.encode('utf-8'))result_queue.put(receive_data)else:feedback_data = 'failure'client_socket.sendall(feedback_data.encode('utf-8'))
def get_database(client_socket, result_queue):"""从服务器端接收数据(姓名,图片)  {”name“: 姓名, "image": 图片}放在result_queue队列中,然后让本地模型检测特征 用于人脸数据库的构建Args:client_socket:result_queue:"""message_to_send = {'message': 'get_database_face', 'data': 0}send_receive(client_socket, message_to_send)while True:receive_send(client_socket, result_queue)

2.定义函数features_construct:

        从 result_queue 队列中取出,从服务器获取的人脸数据库信息(姓名,图片) {”name“: 姓名, "image": 图片}

        然后 将数据 进行 字节序列解码为字符串的操作,

        再将 JSON 格式的字符串转换为 Python 对象 词典,

        然后提取,姓名,人脸图片

        然后将经过Base64编码的图像数据解码,并使用OpenCV库将解码后的字节数据转换为NumPy数组,以便在Python中进行图像处理和分析

        使用app.get 检测人脸特征 并存放在 result_queue1 以待发送

        存放在 result_queue1 队列的 数据格式为词典形式

       {”name“: 姓名, "feature": 人脸特征}

        姓名:str

        人脸特征:[ 1,2,3..............]

def features_construct(app, result_queue, result_queue1):"""从 result_queue 队列中取出,从服务器获取的人脸数据库信息(姓名,图片)  {”name“: 姓名, "image": 图片}使用app.get 检测人脸特征 并存放如result_queue1 以待发送发送数据格式  {”name“: 姓名, "feature": 人脸特征}Args:app:result_queue:result_queue1:"""while True:while not result_queue.empty():face_data = result_queue.get()face_data = json.loads(face_data.decode('utf-8'))name = face_data['name']image = face_data['image']# 解码图像img_bytes = base64.b64decode(image)# 将字节数据转换为NumPy数组image = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), cv2.IMREAD_COLOR)features = []data_dict = {}for i in range(image):img = image[i]face_all = app.get(img)for face_single in face_all:  # 遍历每个人脸features.append(face_single.normed_embedding)  # 将人脸的嵌入特征加入features列表feature = mean_feature_fusion(features)data_dict['name'] = namedata_dict['feature'] = featureresult_queue1.put(data_dict)

3.定义函数send_features_data:

       从多进程队列result_queue1 中 读取数据 feature_data,

        添加消息头message:feature

        数据格式:

{'message': 'feature', "name": '姓名', 'feature': "人脸特征"}

        将词典数据 转换为JSON格式的字符串

        然后对字符串进行UTF-8编码 进行传输

def send_features_data(client_socket, result_queue1):"""进行数据发送,将多进程队列result_queue1 中 数据读取并发送回服务器端  :人脸数据可特征构建人脸特征数据(姓名,特征数据)Args:client_socket:result_queue: 多进程队列"""while True:while not result_queue1.empty():feature_data = result_queue1.get()feature_data['message'] = 'feature'json_data = json.dumps(feature_data)send_receive(client_socket, json_data)
def send_receive(client_socket, data):"""发送数据 data,并接收服务器端  feedback信息Args:client_socket:data: 要发送的数据"""client_socket.sendall(data.encode('utf-8'))feedback_data = client_socket.recv(1024)feedback_data = feedback_data.decode('utf-8')print("已发送数据,对方已接收,反馈信息为:", feedback_data)

4. 定义函数database_features_construct:

        使用多进程 将上述函数串联起来

def database_features_construct(app, result_queue, result_queue1):# 服务器地址和端口server_address = ('192.168.2.4', 12345)# 创建一个TCP socketclient_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)# 连接到服务器client_socket.connect(server_address)print(f"Connected to server at {server_address}")# 发送消息给服务器message_to_send = "Hello, server! This is the client."client_socket.send(message_to_send.encode('utf-8'))# 接收服务器消息data = client_socket.recv(1024)print(f"Received data from server: {data.decode('utf-8')}")get_database_process = multiprocessing.Process(target=get_database, args=(client_socket, result_queue))features_construct_process = multiprocessing.Process(target=features_construct, args=(app, result_queue, result_queue1))send_features_data_process = multiprocessing.Process(target=send_features_data, args=(client_socket, result_queue1))# 启动进程get_database_process.start()features_construct_process.start()send_features_data_process.start()# 等待两个进程结束get_database_process.join()features_construct_process.join()send_features_data_process.join()# 关闭连接client_socket.close()

5. main 函数

if __name__ == "__main__":parser2 = argparse.ArgumentParser(description='insightface app test')  # 创建参数解析器,设置描述为'insightface app test'# 通用设置parser2.add_argument('--ctx', default=0, type=int,help='ctx id, <0 means using cpu')  # 添加参数'--ctx',默认值为0,类型为整数,帮助信息为'ctx id, <0 means using cpu'parser2.add_argument('--det-size', default=640, type=int,help='detection size')  # 添加参数'--det-size',默认值为640,类型为整数,帮助信息为'detection size'face_args = parser2.parse_args()  # 解析参数face_app = FaceAnalysis()  # 创建FaceAnalysis实例face_app.prepare(ctx_id=face_args.ctx, det_size=(face_args.det_size, face_args.det_size))  # 准备分析器,设置ctx_id和det_sizeresult_queue = multiprocessing.Queue()  # 多进程队列result_queue1 = multiprocessing.Queue()database_features_construct(face_app, result_queue, result_queue1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【CHI】Ordering保序

本节介绍CHI协议所包含的支持系统保序需求的机制&#xff0c;包括&#xff1a; • Multi-copy atomicity • Completion response and ordering • Completion acknowledgment • Transaction ordering 一、 Multi-copy atomicity CHI协议中所使用的memory model要求为mu…

【面试经典150 | 数学】Pow(x, n)

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;快速幂-递归方法二&#xff1a;快速幂-迭代 其他语言python3 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为主…

01背包 P1507 NASA的食物计划

P1507 NASA的食物计划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 普通01背包状态表示&#xff1a;f(i, j)表示前i件物品放入一个容量为j的背包可以获得的最大价值。 本题类似&#xff0c;f(i, j, k)表示前i件物品放入一个限制为j&#xff0c;且另一个限制为k的背包中可以…

王者荣耀游戏

游戏运行如下&#xff1a; sxt Background package sxt;import java.awt.*; //背景类 public class Background extends GameObject{public Background(GameFrame gameFrame) {super(gameFrame);}Image bg Toolkit.getDefaultToolkit().getImage("C:\\Users\\24465\\D…

原型模式-C++实现

原型模式是一种创建型设计模式&#xff0c;它允许通过克隆现有的对象来生成新的对象&#xff0c;而不是通过实例化新对象。 原型模式同样用于隔离类对象的使用者和具体类型之间的耦合关系&#xff0c;它同样要求这些“异变类”有稳定的接口。 举例&#xff1a; 假设有一个游戏…

5分钟教你轻松搭建Web自动化测试框架

在程序员的世界中&#xff0c;一切重复性的工作&#xff0c;都应该通过程序自动执行。「自动化测试」就是一个最好的例子。 随着互联网应用开发周期越来越短&#xff0c;迭代速度越来越快&#xff0c;只会点点点&#xff0c;不懂开发的手工测试&#xff0c;已经无法满足如今的…

3.8-镜像的发布

如果我们想将image push到docker hub里面&#xff0c;那么我们的image的名字一定要是这种格式&#xff1a;docker hub id/imageName&#xff0c;例如&#xff1a;lvdapiaoliang/hello-docker docker hub个人账户设置地址&#xff1a; 在push之前要先登录&#xff1a; docker l…

数学建模值TOPSIS法及代码

TOPSIS法 TOPSIS法简称为优劣距离解法&#xff0c;是一种常见法综合评价方法&#xff0c;其能充分利用原始数据的信息&#xff0c;其结果能精确地反映各个评价方案之间的差距。 模型介绍 上篇文章谈到的层次分析法是有局限性的。比如评价的决策层不能太多&#xff0c;太多的…

ISP--Black Level Correction(黑电平矫正)

图像的每一个像素点都是由一个光电二极管控制的&#xff0c;由二极管将电信号&#xff0c;转换为数字信号。 那么&#xff0c;我们知道了&#xff0c;图像的像素值是与电信号强度相关的。但是&#xff0c;我们得知道&#xff0c;每一个光电二极管要想工作&#xff0c;都得有一定…

Three.js相机模拟

有没有想过如何在 3D Web 应用程序中模拟物理相机? 在这篇博文中,我将向你展示如何使用 Three.js和 OpenCV 来完成此操作。 我们将从模拟针孔相机模型开始,然后添加真实的镜头畸变。 具体来说,我们将仔细研究 OpenCV 的两个失真模型,并使用后处理着色器复制它们。 拥有逼…

arm开发板

一个简单的hello world程序 minicom用来和开发板之间交互并且可以向开发板传输文件。打印hello world字符串。在linux虚拟机上编译我的代码&#xff0c;使用的交叉编译工具是arm-linux-gnueabihf-gcc (hard float) 可以使用 readelf -h libc.so.6 查看开发板是不是&#xff08…

MATLAB程序设计课后作业三、四

1、课程中学习到kmeans聚类函数&#xff0c;查询kmeans算法的基本原理&#xff0c;还有什么其他类型的聚类算法&#xff1f; 层次聚类算法&#xff0c;它不需要预先指定簇的个数&#xff0c;而是通过构建数据点的层次结构来进行聚类&#xff0c;可以得到不同层次的聚类结果。一…

C/C++最大质因子 2021年12月电子学会中小学生软件编程(C/C++)等级考试一级真题答案解析

目录 C/C最大质因子 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C最大质因子 一、题目要求 1、编程实现 质因子是指能整除给定正整数的质数。而最大质因子是指一个整数的所有质因子中最大的那个。…

开源集群管理系统对比分析:Kubernetes 与 Apache Mesos

集群管理系统是关键的软件解决方案&#xff0c;可以在互连机器网络中有效分配和利用计算资源。毫无疑问&#xff0c;它们通过确保可扩展性、高可用性和有效的资源管理在现代计算中发挥着至关重要的作用&#xff0c;这使得它们对于运行复杂的应用程序、管理数据中心以及进一步增…

数据分析基础之《jupyter notebook工具》

一、安装库 1、linux库 yum install python3-devel 2、python库 pip3 install -U matplotlib pip3 install -U numpy pip3 install -U pandas pip3 install -U TA-Lib pip3 install -U tables pip3 install -U notebook 3、如果TA-Lib安装不上&#xff0c;先手动安装依赖库 …

cadence layout lvs时出现error

Error&#xff1a;Schematic export failed or was cancelled.Please consult the transcript in the viewer window. 解决办法同下&#xff1a; cadence layout lvs时出现error-CSDN博客

城市智慧路灯智能照明管理系统简介

城市路灯存在着开关灯控制方式单、亮灯时间不准确、巡查困难、故障处理不及时、亮灯率无法把控等问题&#xff0c;从而导致路灯系统能耗高&#xff0c;维护成本高。传统的路灯控制系统已无法满足智慧城市管理的需要&#xff0c;智能路灯照明控制系统从而得到广泛应用。 叁仟智…

在python中分别利用numpy,tensorflow,pytorch实现数据的增加维度(升维),减少维度(降维)

文章目录 前言一、使用numpy实现升维度&#xff0c;降维度二、使用TensorFlow实现升维度&#xff0c;降维度三、使用PyTorch实现升维度&#xff0c;降维度总结 前言 我们明确一下升维和降维的概念&#xff1a; 升维&#xff08;Dimensionality Augmentation&#xff09;&…

目标检测YOLO实战应用案例100讲-基于改进YOLOv5s的道路目标检测

目录 前言 国内外研究现状 传统目标检测方法 基于深度学习的目标检测方法

WebSocket --- ws模块源码解析(详解)

摘要 在这一篇文章中&#xff0c;写了如何在node端和web端&#xff0c;实现一个WebSocket通信。 WebSocket在node端和客户端的使用 而在node端里面&#xff0c;我们使用了ws模块来创建WebSocket和WebSocketServer&#xff0c;那ws模块是如何做到可以和客户端进行双向通信的呢…