庖丁解牛:NIO核心概念与机制详解 01 _ 入门篇

文章目录

  • Pre
  • 输入/输出
  • Why NIO
  • 流与块的比较
  • 通道和缓冲区
    • 概述
    • 什么是缓冲区?
    • 缓冲区类型
    • 什么是通道?
    • 通道类型
  • NIO 中的读和写
    • 概述
    • Demo : 从文件中读取
      • 1. 从FileInputStream中获取Channel
      • 2. 创建ByteBuffer缓冲区
      • 3. 将数据从Channle读取到Buffer中
    • Demo : 写入文件
      • 1. 从 FileOutputStream 获取一个通道
      • 2. 创建ByteBuffer缓冲区,写入数据
      • 3. 写入缓冲区
    • Demo : 读写结合
      • Code
      • 【内部循环 (inner loop) 】
      • 【检查状态】
      • 【 重设缓冲区】

在这里插入图片描述


Pre

NIO 库是在 JDK 1.4 中引入的。NIO 弥补了原来的 I/O 的不足,它在标准 Java 代码中提供了高速的、面向块的 I/O。通过定义包含数据的类,以及通过以块的形式处理这些数据,NIO 不用使用本机代码就可以利用低级优化,这是原来的 I/O 包所无法做到的。


输入/输出

I/O 或者输入/输出指的是计算机与外部世界或者一个程序与计算机的其余部分的之间的接口。它对于任何计算机系统都非常关键,因而所有 I/O 的主体实际上是内置在操作系统中的。单独的程序一般是让系统为它们完成大部分的工作。

在 Java 编程中,直到最近一直使用 流 的方式完成 I/O。所有 I/O 都被视为单个的字节的移动,通过一个称为 Stream 的对象一次移动一个字节。流 I/O 用于与外部世界接触。它也在内部使用,用于将对象转换为字节,然后再转换回对象。

NIO 与原来的 I/O 有同样的作用和目的,但是它使用不同的方式 块 I/O。 块 I/O 的效率可以比流 I/O 高许多。


Why NIO

NIO 的创建目的是为了让 Java 程序员可以实现高速 I/O 而无需编写自定义的本机代码。NIO 将最耗时的 I/O 操作(即填充和提取缓冲区)转移回操作系统,因而可以极大地提高速度。


流与块的比较

原来的 I/O 库(在 java.io.*中) 与 NIO 最重要的区别是数据打包和传输的方式。正如前面提到的,原来的 I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。

面向流 的 I/O 系统一次一个字节地处理数据。一个输入流产生一个字节的数据,一个输出流消费一个字节的数据。为流式数据创建过滤器非常容易。链接几个过滤器,以便每个过滤器只负责单个复杂处理机制的一部分,这样也是相对简单的。不利的一面是,面向流的 I/O 通常相当慢。

一个 面向块 的 I/O 系统以块的形式处理数据。每一个操作都在一步中产生或者消费一个数据块。按块处理数据比按(流式的)字节处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。


通道和缓冲区

概述

通道 和 缓冲区 是 NIO 中的核心对象,几乎在每一个 I/O 操作中都要使用它们。

  • 通道是对原 I/O 包中的流的模拟。到任何目的地(或来自任何地方)的所有数据都必须通过一个 Channel 对象。
  • 一个 Buffer 实质上是一个容器对象。发送给一个通道的所有对象都必须首先放到缓冲区中;同样地,从通道中读取的任何数据都要读到缓冲区中。

什么是缓冲区?

Buffer 是一个对象, 它包含一些要写入或者刚读出的数据。 在 NIO 中加入 Buffer 对象,体现了新库与原 I/O 的一个重要区别。在面向流的 I/O 中,您将数据直接写入或者将数据直接读到 Stream 对象中。

在 NIO 库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的。在写入数据时,它是写入到缓冲区中的。任何时候访问 NIO 中的数据,您都是将它放到缓冲区中。

缓冲区实质上是一个数组。通常它是一个字节数组,但是也可以使用其他种类的数组。但是一个缓冲区不 仅仅 是一个数组。缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程


缓冲区类型

最常用的缓冲区类型是 ByteBuffer。一个 ByteBuffer 可以在其底层字节数组上进行 get/set 操作(即字节的获取和设置)。

ByteBuffer 不是 NIO 中唯一的缓冲区类型。

事实上,对于每一种基本 Java 类型都有一种缓冲区类型:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
    DoubleBuffer

每一个 Buffer 类都是 Buffer 接口的一个实例。 除了 ByteBuffer,每一个 Buffer 类都有完全一样的操作,只是它们所处理的数据类型不一样。因为大多数标准 I/O 操作都使用 ByteBuffer,所以它具有所有共享的缓冲区操作以及一些特有的操作


什么是通道?

Channel是一个对象,可以通过它读取和写入数据。拿 NIO 与原来的 I/O 做个比较,通道就像是流

正如前面提到的,所有数据都通过 Buffer 对象来处理。您永远不会将字节直接写入通道中,相反,您是将数据写入包含一个或者多个字节的缓冲区。同样,您不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节


通道类型

通道与流的不同之处在于**通道是双向的。**而流只是在一个方向上移动(一个流必须是 InputStream 或者 OutputStream 的子类), 而 通道 可以用于读、写或者同时用于读写

因为它们是双向的,所以通道可以比流更好地反映底层操作系统的真实情况。特别是在 UNIX 模型中,底层操作系统通道是双向的。


NIO 中的读和写

概述

读和写是 I/O 的基本过程。从一个通道中读取很简单:只需创建一个缓冲区,然后让通道将数据读到这个缓冲区中。写入也相当简单:创建一个缓冲区,用数据填充它,然后让通道用这些数据来执行写入操作。


Demo : 从文件中读取

从一个文件中读取一些数据。如果使用原来的 I/O,那么我们只需创建一个 FileInputStream 并从它那里读取。而在 NIO 中,情况稍有不同:我们首先从 FileInputStream 获取一个 Channel 对象,然后使用这个通道来读取数据。

在 NIO 系统中,任何时候执行一个读操作,都是从通道中读取,但不是直接从通道读取。因为所有数据最终都驻留在缓冲区中,所以您是从通道读到缓冲区中。

因此读取文件涉及三个步骤:

  • (1) 从 FileInputStream 获取 Channel
  • (2) 创建 Buffer
  • (3) 将数据从 Channel 读到 Buffer 中

1. 从FileInputStream中获取Channel

第一步是获取通道。我们从 FileInputStream 获取通道:

FileInputStream fin = new FileInputStream( "readandshow.txt" );
FileChannel fc = fin.getChannel();

2. 创建ByteBuffer缓冲区

下一步是创建缓冲区:

ByteBuffer buffer = ByteBuffer.allocate( 1024 );

3. 将数据从Channle读取到Buffer中

最后,需要将数据从通道读到缓冲区中,如下所示:

fc.read( buffer );

注意:我们不需要告诉通道要读 多少数据 到缓冲区中。每一个缓冲区都有复杂的内部统计机制,它会跟踪已经读了多少数据以及还有多少空间可以容纳更多的数据。更多请继续往下看关于缓冲区内部细节 中介绍更多关于缓冲区统计机制的内容。


Demo : 写入文件

1. 从 FileOutputStream 获取一个通道

在 NIO 中写入文件类似于从文件中读取。首先从 FileOutputStream 获取一个通道:

FileOutputStream fout = new FileOutputStream( "writesomebytes.txt" );
FileChannel fc = fout.getChannel();

2. 创建ByteBuffer缓冲区,写入数据

下一步是创建一个缓冲区并在其中放入一些数据 。

在这里,数据将从一个名为 message 的数组中取出,这个数组包含字符串 "Some bytes" 的 ASCII 字节(下面会解释 buffer.flip() 和 buffer.put() 调用)。

ByteBuffer buffer = ByteBuffer.allocate( 1024 );for (int ii=0; ii<message.length; ++ii) {buffer.put( message[ii] );
}
buffer.flip();

3. 写入缓冲区

最后一步是写入缓冲区中:

fc.write( buffer );

<font color=brown注意在这里同样不需要告诉通道要写入多数据。缓冲区的内部统计机制会跟踪它包含多少数据以及还有多少数据要写入。


Demo : 读写结合

下面我们将看一下在结合读和写时会有什么情况。

我们以一个名为 CopyFile.java 的简单程序作为这个练习的基础,它将一个文件的所有内容拷贝到另一个文件中。CopyFile.java 执行三个基本操作:

  • 首先创建一个 Buffer
  • 然后从源文件中将数据读到这个缓冲区中
  • 然后将缓冲区写入目标文件。

这个程序不断重复 ― 读、写、读、写 ― 直到源文件结束。

CopyFile 程序我们看看如何检查操作的状态,以及如何使用 clear() 和 flip() 方法重设缓冲区,并准备缓冲区以便将新读取的数据写到另一个通道中。

Code

package com.artisan.nio;import java.io.*;
import java.nio.*;
import java.nio.channels.*;/*** @author 小工匠* @version 1.0* @mark: show me the code , change the world*/
public class CopyFile {public static  void main( String args[] ) throws Exception {// 创建文件输入流和文件输出流FileInputStream fin = new FileInputStream( "boot-netty/src/main/resources/a.txt" );FileOutputStream fout = new FileOutputStream( "boot-netty/src/main/resources/c.txt" );// 创建文件输入流和文件   输出流FileChannel fcin = fin.getChannel();FileChannel fcout = fout.getChannel();// 创建文件输入流和文件输出流ByteBuffer buffer = ByteBuffer.allocate( 1024 );// 创建文件输入流和文件输出流while (true) {// 清空缓冲区buffer.clear();// 清空缓冲区int r = fcin.read( buffer );// 清空缓冲区if (r==-1) {break;}// 反转缓冲区,准备写入数据buffer.flip();// 将缓冲区的数据写入到文件输出流fcout.write( buffer );}}
}

程序解读:

【内部循环 (inner loop) 】

运行 CopyFile 例子 ,因为缓冲区会跟踪它自己的数据,所以 CopyFile 程序的内部循环 (inner loop) 非常简单,如下所示:

fcin.read( buffer );
fcout.write( buffer );

第一行将数据从输入通道 fcin 中读入缓冲区,第二行将这些数据写到输出通道 fcout 。


【检查状态】

下一步是检查拷贝何时完成。当没有更多的数据时,拷贝就算完成,并且可以在 read() 方法返回 -1 是判断这一点,如下所示:

int r = fcin.read( buffer );if (r==-1) {break;
}

【 重设缓冲区】

最后,在从输入通道读入缓冲区之前,我们调用 clear() 方法。同样,在将缓冲区写入输出通道之前,我们调用 flip() 方法,如下所示:

buffer.clear();
int r = fcin.read( buffer );if (r==-1) {break;
}buffer.flip();
fcout.write( buffer );
  • clear() 方法重设缓冲区,使它可以接受读入的数据。
  • flip() 方法让缓冲区可以将新读入的数据写入另一个通道。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/151696.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法-二叉树-简单-二叉树的最大和最小深度

记录一下算法题的学习7 二叉树的最大深度 题目&#xff1a;给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 示例分析&#xff…

MATLAB 状态空间设计 —— LQG/LQR 和极点配置算法

系列文章目录 文章目录 系列文章目录前言一、相关函数 —— LQG/LQR 和极点配置算法1.1 LQR —— lqr 函数1.1.1 函数用法1.1.2 举例1.1.2.1 倒摆模型的 LQR 控制 1.2 LQG —— lqg() 函数1.2.1 函数用法1.2.2 举例 1.3 极点配置 —— place() 函数1.3.1 函数用法1.3.2 示例1.3…

Selenium安装WebDriver最新Chrome驱动(含116/117/118/119)

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

如何使用ffmpeg将FLAC格式转为MP3格式

以下是使用ffmpeg将FLAC格式转换为MP3的方法&#xff1a; 单个文件转换&#xff1a; ffmpeg -i input.flac -ab 320k -map_metadata 0 -id3v2_version 3 output.mp3 其中&#xff0c;input.flac是要转换的FLAC文件名&#xff0c;output.mp3是转换后的MP3文件名。-ab 320k表示…

如何在虚拟机的Ubuntu22.04中设置静态IP地址

为了让Linux系统的IP地址在重新启动电脑之后IP地址不进行变更&#xff0c;所以将其IP地址设置为静态IP地址。 查看虚拟机中虚拟网络编辑器获取当前的子网IP端 修改文件/etc/netplan/00-installer-config.yaml文件&#xff0c;打开你会看到以下内容 # This is the network conf…

Vue中的组件间通信有哪些方式?

Vue中实现组件间通信的方式非常多样&#xff0c;以下是一些常用的方式&#xff1a; Props / $emit&#xff1a;这是最常用的组件通信方式&#xff0c;父组件通过属性向子组件传递数据&#xff0c;子组件通过事件向父组件传递数据。Ref / $refs&#xff1a;这是一种访问子组件或…

面向开发者的Android

Developerhttps://developer.android.google.cn/?hlzh-cn SDK 平台工具版本说明https://developer.android.google.cn/studio/releases/platform-tools?hlzh-cn#revisions Android SDK Platform-Tools 是 Android SDK 的一个组件。它包含与 Android 平台进行交互的工具…

【Redis】springboot整合redis(模拟短信注册)

要保证redis的服务器处于打开状态 上一篇&#xff1a; 基于session的模拟短信注册 https://blog.csdn.net/m0_67930426/article/details/134420531 整个流程是&#xff0c;前端点击获取验证码这个按钮&#xff0c;后端拿到这个请求&#xff0c;通过RandomUtil 工具类的方法生…

dm 聚合函数和group的总结

-- dm&#xff1a;select中只能为group字段&#xff0c;聚合函数&#xff1b;不能有其他内容 select id,user_id,role_id from assets_dm_test.user_role GROUP by role_id; -- mysql: ok 执行ok&#xff0c;但是语法有问题&#xff0c;多条时只显示了第一条 sel…

nginx得if语句内proxy_pass不允许携带url部分,如何处理

在nginx中&#xff0c;proxy_pass指令不能直接携带URL部分。但是&#xff0c;可以使用rewrite指令结合正则表达式来处理URL部分。 下面是一个示例配置&#xff0c;演示如何使用rewrite指令将URL中的某个部分进行替换后传递给后端服务器&#xff1a; location /v100/{proxy_…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Maven依赖管理,版本号管理,继承和聚合

第一章 Maven的依赖管理 1.1 依赖范围 依赖语法&#xff1a;<scope> compile【默认值】&#xff1a;在main、test、Tomcat【服务器】下均有效。test&#xff1a;只能在test目录下有效 junit provided&#xff1a;在main、test下均有效&#xff0c;Tomcat【服务器】无效…

Labview中for循环“无法终止”问题?即使添加了条线接线端,达到终止条件后,仍在持续运行?

关键&#xff1a; 搞清楚“运行”和“连续运行”两种运行模式的区别。 出现题目中所述问题&#xff0c;大概率是因为代码运行在“连续运行“模式下。 可以通过添加 探针 的方式&#xff0c;加深理解&#xff01;

拼图游游戏代码

一.创建新项目 二.插入图片 三.游戏的主界面 1.代码 package com.itheima.ui;import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.util.Random;import javax.swing…

pnpm : 无法加载文件 E:\Soft\PromSoft\nodejs\node_global\pnpm.ps1,

pnpm : 无法加载文件 E:\Soft\PromSoft\nodejs\node_global\pnpm.ps1&#xff0c;因为在此系统上禁止运行脚本。有关详细信息&#xff0c;请参阅 https:/go.microsoft.com/fwlink/?LinkID135170 中 的 about_Execution_Policies。 所在位置 行:1 字符: 1pnpm -v~~~~ CategoryI…

数据结构【DS】栈的应用

描述一下如何实现括号匹配&#xff1f; 初始时栈为空。 从左往右遍历算术表达式中的每个括号元素&#xff1a; ①当遍历到左括号时&#xff0c;将其压入栈顶。 ②当遍历到右括号时&#xff0c;将栈顶元素出栈&#xff0c;并判断出栈的左括号与当前遍历的右括号是否匹配&…

杭电oj 2050 折线分割平面 C语言

#include<stdio.h>void main() {int c, n, i;long long sum;while (~scanf_s("%d", &c)){while (c--){scanf_s("%d", &n); sum 0;sum 2 * n * n - n 1;printf("%lld\n", sum);}} }

Django 入门学习总结6 - 测试

1、介绍自动化测试 测试的主要工作是检查代码的运行情况。测试有全覆盖和部分覆盖。 自动测试表示测试工作由系统自动完成。 在大型系统中&#xff0c;有许多组件有很复杂的交互。一个小的变化可能会带来意想不到的后果 测试能发现问题&#xff0c;并以此解决问题。 测试驱…

FPGA实现平衡小车(文末开源!!)

FPGA平衡小车 一. 硬件介绍 底板资源: TB6612电机驱动芯片 * 2 MPU6050陀螺仪 WS2812 RGB彩色灯 * 4 红外接收头 ESP-01S WIFI 核心板 微相 A7_Lite Artix-7 FPGA开发板 电机采用的是平衡小车之家的MG310(GMR编码器)电机。底板上有两个TB6612芯片&#xff0c;可以驱动…

【C/PTA】数组进阶练习(三)

本文结合PTA专项练习带领读者掌握数组&#xff0c;刷题为主注释为辅&#xff0c;在代码中理解思路&#xff0c;其它不做过多叙述。 目录 7-1 数组-排名查询7-2 数组-人数过半7-3 数组-数值插入7-4 数组-冒泡排序7-5 数组-删除元素7-6 数组-歌手得分7-7 数组-前K个成绩7-8 数组-…