卷积神经网络(VGG-19)灵笼人物识别

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
    • 5. 归一化
  • 三、构建VGG-19网络
    • 1. 官方模型(已打包好)
    • 2. 自建模型
    • 3. 网络结构图
  • 四、编译
  • 五、训练模型
  • 六、模型评估
  • 七、保存and加载模型
  • 八、预测

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

数据集中一共有白月魁、查尔斯、红蔻、马克、摩根、冉冰等6个人物角色。

文件夹含义数量
baiyuekui白月魁40 张
chaersi查尔斯76 张
hongkou红蔻36 张
make马克38张
mogen摩根30 张
ranbing冉冰60张
image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 280 files belonging to 6 classes.
Using 252 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 280 files belonging to 6 classes.
Using 28 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['baiyuekui', 'chaersi', 'hongkou', 'make', 'mogen', 'ranbing']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(16, 224, 224, 3)
(16,)
  • Image_batch是形状的张量(16,180,180,3)。这是一批形状180x180x3的16张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(16,)的张量,这些标签对应16张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

5. 归一化

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalization_train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 0.9928046

三、构建VGG-19网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

1. 官方模型(已打包好)

官网模型调用这块我放到后面几篇文章中,下面主要讲一下VGG-19

# model = keras.applications.VGG19(weights='imagenet')
# model.summary()

2. 自建模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG19(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv4')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG19(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv4 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0
_________________________________________________________________

3. 网络结构图

结构说明:

  • 16个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-19包含了19个隐藏层(16个卷积层和3个全连接层),故称为VGG-19

**在这里插入图片描述
**

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

五、训练模型

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
16/16 [==============================] - 21s 274ms/step - loss: 5.4494 - accuracy: 0.1508 - val_loss: 6.8600 - val_accuracy: 0.0714
Epoch 2/10
16/16 [==============================] - 2s 130ms/step - loss: 1.7976 - accuracy: 0.3174 - val_loss: 6.8402 - val_accuracy: 0.3929
Epoch 3/10
16/16 [==============================] - 2s 139ms/step - loss: 1.4882 - accuracy: 0.4201 - val_loss: 6.8453 - val_accuracy: 0.5357
Epoch 4/10
16/16 [==============================] - 2s 135ms/step - loss: 1.1548 - accuracy: 0.5917 - val_loss: 6.8551 - val_accuracy: 0.3571
Epoch 5/10
16/16 [==============================] - 2s 139ms/step - loss: 1.0376 - accuracy: 0.6267 - val_loss: 6.8421 - val_accuracy: 0.4286
Epoch 6/10
16/16 [==============================] - 2s 136ms/step - loss: 1.0189 - accuracy: 0.5942 - val_loss: 6.8277 - val_accuracy: 0.5714
Epoch 7/10
16/16 [==============================] - 2s 133ms/step - loss: 0.6873 - accuracy: 0.7761 - val_loss: 6.8382 - val_accuracy: 0.6429
Epoch 8/10
16/16 [==============================] - 2s 128ms/step - loss: 0.3739 - accuracy: 0.9019 - val_loss: 6.8109 - val_accuracy: 0.5357
Epoch 9/10
16/16 [==============================] - 2s 128ms/step - loss: 0.3761 - accuracy: 0.8547 - val_loss: 6.8101 - val_accuracy: 0.6429
Epoch 10/10
16/16 [==============================] - 2s 129ms/step - loss: 0.1258 - accuracy: 0.9713 - val_loss: 6.7796 - val_accuracy: 0.8929

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

七、保存and加载模型

# 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = keras.models.load_model('model/my_model.h5')

八、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/151573.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zotero在word中插入带超链接的参考文献/交叉引用/跳转参考文献

Zotero以其丰富的插件而闻名,使用起来十分的带劲,最重要的是它是免费的、不卡顿,不像某专业软件。 然而Zotero在word插入参考文献时,无法为参考文献添加超链接,这是一个不得不提的遗憾。 不过,有大佬已经…

Windows SDK

Windows SDK (10.0.22621) for Windows 11,版本 22H2 (2023 年 10 月更新) 提供了用于生成 Windows 应用程序的最新标头、库、元数据和工具。 使用此 SDK 为Windows 11版本 22H2 和早期 Windows 版本生成通用 Windows 平台 (UWP) 和 Win32 应用程序。 Windows 应用…

武汉凯迪正大KDHG-220P互感器综合测试仪

主要特点 武汉凯迪正大KDHG-220P互感器综合测试仪,仅需进行简单的数字设定:设定互感器的额定参数。仪器将全过程自动记录数据,并自动将变比极性、伏安特性曲线等计算并显示出来,省去换线、手动调压、人工记录、整理、描曲线等烦琐…

openAI API简介 怎么写提示词获取更好的结果。prompt-engineering使用指南。人工智能的重大里程碑事件及技术创新chatGPT1

OpenAI API 几乎可以应用于任何任务。 包括内容或代码生成、摘要、对话、创意写作、图片生成、文本语音互转等。 关键概念 文本生成:提示,输入越精准,输出越精准。 获得更好结果的几种策略: 1.写出清晰的指令:包含…

【图数据库实战】HugeGraph图计算流程

HugeGraph是一款易用、高效、通用的开源图数据库系统(Graph Database,GitHub项目地址), 实现了Apache TinkerPop3框架及完全兼容Gremlin查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的…

Docker之虚悬镜像(查看、删除)

虚悬镜像: 仓库名、标签都是的镜像,俗称dangling image 查看 docker image ls -f danglingtrue删除 虚悬镜像已经失去存在价值,可以删除 docker image prune

Spring注解开发

注解开发 注解开发定义bean 使用Component定义bean 核心配置文件中通过组件扫描加载bean Spring提供Component注解的三个衍生注解 Controller:用于表现层bean定义Service:用于业务层bean定义Repository:用于数据层bean定义 纯注解开发 Spr…

解决 requests 2.28.x 版本 SSL 错误

最近,在使用requests 2.28.1版本进行HTTP post传输时,您可能遇到了一个问题,即SSL验证失败并显示错误消息(Caused by SSLError(SSLCertVerificationError(1, [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get loc…

【FFmpeg实战】ffmpeg播放器-音视频解码流程

音视频介绍 音视频解码流程 FFmpeg解码的数据结构说明 AVFormatContext:封装格式上下文结构体,全局结构体,保存了视频文件封装格式相关信息AVInputFormat:每种封装格式,对应一个该结构体AVStream[0]:视频文件中每个视频&#xff…

LongAdder功能和原理

AtomicLong能保证并发情况下计数的准确性,其内部通过CAS来解决并发安全性的问题。 AtomicLong的缺点: 可以看到在高并发情况下,当有大量线程同时去更新一个变量,任意一个时间点只有一个线程能够成功,绝大部分的线程在尝…

自动驾驶学习笔记(十)——Cyber通信

#Apollo开发者# 学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往: 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 Cyber通信 编写代码 编译程序 运行…

FISCOBCOS入门(十)Truffle测试helloworld智能合约

本文带你从零开始搭建truffle以及编写迁移脚本和测试文件,并对测试文件的代码进行解释,让你更深入的理解truffle测试智能合约的原理,制作不易,望一键三连 在windos终端内安装truffle npm install -g truffle 安装truffle时可能出现网络报错,多试几次即可 truffle --vers…

人力资源小程序

人力资源管理对于企业的运营至关重要,而如今随着科技的发展,制作一个人力资源小程序已经变得非常简单和便捷。在本文中,我们将为您介绍如何通过乔拓云网制作一个人力资源小程序,只需五个简单的步骤。 第一步:注册登录乔…

基于单片机的自动循迹小车(论文+源码)

1.系统设计 此次基于单片机的自动循迹小车的设计系统,结合循迹模块来共同完成本次设计,实现小车的循迹功能,其其整体框架如图2.1所示。其中,采用STC89C52单片机来作为核心控制器,负责将各个传感器等模块链接起来&…

四旋翼无人机的飞行原理--【其利天下分享】

近年来,无人机在多领域的便捷应用促使其迅猛的发展,如近年来的多场战争,无人机的战场运用发挥得淋漓尽致。 下面我们针对生活中常见的四旋翼无人机的飞行原理做个基础的介绍,以飨各位对无人机有兴趣的朋友。 一:四旋翼…

基于变形卷积和注意机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)

原论文链接->DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism | IEEE Journals & Magazine | IEEE Xplore DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Base…

1334. 阈值距离内邻居最少的城市/Floyd 【leetcode】

1334. 阈值距离内邻居最少的城市 有 n 个城市,按从 0 到 n-1 编号。给你一个边数组 edges,其中 edges[i] [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold。 返回能通过某些路径…

Ubuntu18.04安装ROS系统+turtle测试

安装 1.设置安装源 sudo sh -c echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list sudo sh -c . /etc/lsb-release && echo "deb http://mirrors.tuna.tsinghua.edu.cn/ros/ubun…

linux网络编程之TCP协议编程

Linux网络编程之TCP协议编程 tcp协议编程模型socket函数sockaddr_inbindlistenconnect 应用服务端代码客服端代码 TCP协议编程) tcp协议编程模型 Server 1.创建socket (socket函数) 2.确定服务器协议地址簇 (struct sockaddr) 3.绑定 (bind) 4.监听 ( listen) 5.接受客户端连接…

【并发编程】Synchronized的使用

📫作者简介:小明java问道之路,2022年度博客之星全国TOP3,专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化,文章内容兼具广度、深度、大厂技术方案,对待技术喜欢推理加验证,就职于…