c++模式之单例模式详解

c++模式之单例模式详解

  • 1.概念
  • 2.懒汉模式示例(缺点)
  • 3.懒汉模式线程安全
  • 4.饿汉式创建单例
  • 5.饿汉模式线程示例

1.概念

单例模式是指在整个系统生命周期内,保证一个类只能产生一个实例,确保该类的唯一性.
使用单例两个原因:
1.节省资源。一个类只有一个实例,不存在多份实例,节省资源。
2.方便控制。在一些操作公共资源的场景时,避免了多个对象引起的复杂操作
单例类的特点

  • 构造函数和析构函数为私有类型,目的是禁止外部构造和析构。
  • 拷贝构造函数和赋值构造函数是私有类型,目的是禁止外部拷贝和赋值,确保实例的唯一性。
  • 类中有一个获取实例的静态方法,可以全局访问。

2.懒汉模式示例(缺点)

getInstance函数使用了懒汉式单例模式的实现方式。它首先检查静态成员变量instance是否为空,如果为空则创建一个新的实例,否则直接返回已有的实例。这种实现方式在单线程环境下是有效的,但在多线程环境下可能会导致线程安全问题。
在多线程环境下,多个线程可能会同时检查到instance为空,然后同时创建多个实例,违背了单例模式的初衷。为了解决这个问题,我们需要在创建实例时添加同步机制,以确保只有一个线程能够创建实例。

#include <iostream>
#include <mutex>
#include <ctime>
#include <vector>
using namespace std;void sleep(int time) { clock_t head = clock(); while (clock() - head <= time) {} }class Singleton {
private:static Singleton* instance; // 静态成员变量,用于保存单例实例Singleton() {} // 私有构造函数,防止外部实例化public:static Singleton* getInstance() {if (instance == nullptr) {instance = new Singleton();}return instance;}void someFunction() {// 单例的其他成员函数cout << "HELLO WORLD" << endl;}
};Singleton* Singleton::instance = nullptr; // 初始化静态成员变量int main() {Singleton* obj1 = Singleton::getInstance();obj1->someFunction();Singleton* obj2 = Singleton::getInstance();obj2->someFunction();// obj1和obj2是同一个实例return 0;
}

3.懒汉模式线程安全

添加了一个静态成员变量mutex作为互斥锁,用于线程同步。在getInstance函数中,我们首先进行一次非线程安全的检查,如果instance为空,才会获取互斥锁并再次检查instance是否为空。这样可以确保只有一个线程能够创建实例。
使用了std::lock_guard来自动管理锁的加锁和解锁,以避免手动处理锁的释放。这样可以确保在任何情况下,无论是正常返回还是发生异常,都会自动释放锁。
这个改进后的示例提供了一种线程安全的懒汉式单例模式实现方式,可以在多线程环境下正常工作

#include <iostream>
#include <mutex>
using namespace std;class Singleton {
private:static Singleton* instance; // 静态成员变量,用于保存单例实例static std::mutex mutex; // 互斥锁,用于线程同步Singleton() {} // 私有构造函数,防止外部实例化public:static Singleton* getInstance() {if (instance == nullptr) {lock_guard<std::mutex> lock(mutex); // 加锁if (instance == nullptr) {instance = new Singleton();}}return instance;}void someFunction() {// 单例的其他成员函数cout << "mutex hello world" << endl;}
};Singleton* Singleton::instance = nullptr; // 初始化静态成员变量
std::mutex Singleton::mutex; // 初始化互斥锁int main() {Singleton* obj1 = Singleton::getInstance();obj1->someFunction();Singleton* obj2 = Singleton::getInstance();obj2->someFunction();// obj1和obj2是同一个实例return 0;
}

4.饿汉式创建单例

它是一种在程序启动时就创建实例的单例模式。下面是一个简单的示例来说明如何实现C++的饿汉式单例模式。

Singleton类使用饿汉式的方式创建实例。在静态成员变量instance的定义处,我们直接使用new操作符创建了一个Singleton的实例,并将其赋值给instance。这样,在程序启动时,实例就会被创建并初始化。
在getInstance函数中,我们直接返回已经创建好的实例,而无需再进行实例化。
在main函数中,我们通过调用Singleton::getInstance()来获取单例实例,并调用其成员函数。由于使用了饿汉式创建实例,obj1和obj2实际上是同一个实例。
饿汉式在程序启动时就创建了实例,因此会占用一定的内存空间。此外,如果实例的创建过程较为复杂或耗时,可能会影响程序的启动速度。因此,在选择单例模式的实现方式时,需要根据具体的需求和场景来决定使用懒汉式还是饿汉式。

#include <iostream>
using namespace std;class Singleton {
private:static Singleton* instance; // 静态成员变量,用于保存单例实例Singleton() {} // 私有构造函数,防止外部实例化public:static Singleton* getInstance() {return instance;}void someFunction() {cout << "Hungry Han style instance" << endl;}
};Singleton* Singleton::instance = new Singleton(); // 在静态成员变量初始化时创建实例int main() {Singleton* obj1 = Singleton::getInstance();obj1->someFunction();Singleton* obj2 = Singleton::getInstance();obj2->someFunction();// obj1和obj2是同一个实例return 0;
}

5.饿汉模式线程示例

#include <iostream>
#include <thread>
using namespace std;class ThreadSingleton {
private:static ThreadSingleton* instance; // 静态成员变量,用于保存单例实例ThreadSingleton() {} // 私有构造函数,防止外部实例化public:static ThreadSingleton* getInstance() {return instance;}void calculateSquareArea(double side) {double area = side * side;std::cout << "The area of the square is: " << area << std::endl;}
};ThreadSingleton* ThreadSingleton::instance = new ThreadSingleton(); // 在静态成员变量初始化时创建实例int main() {std::thread t1([&]() {ThreadSingleton* obj1 = ThreadSingleton::getInstance();obj1->calculateSquareArea(5);});std::thread t2([&]() {ThreadSingleton* obj2 = ThreadSingleton::getInstance();obj2->calculateSquareArea(8);});t1.join();t2.join();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/151560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决 requests 2.28.x 版本 SSL 错误

最近&#xff0c;在使用requests 2.28.1版本进行HTTP post传输时&#xff0c;您可能遇到了一个问题&#xff0c;即SSL验证失败并显示错误消息(Caused by SSLError(SSLCertVerificationError(1, [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get loc…

Stream流常见操作

.stream() 常用方法 .forEach&#xff08;&#xff09; 该方法接收一个 Consumer 接口函数&#xff0c;会将每一个流元素交给该函数进行处理 .filter()&#xff1a;过滤 该接口接收一个 Predicate 函数式接口参数&#xff08;可以是一个Lambda或方法引用&#xff09;作为筛…

【FFmpeg实战】ffmpeg播放器-音视频解码流程

音视频介绍 音视频解码流程 FFmpeg解码的数据结构说明 AVFormatContext&#xff1a;封装格式上下文结构体,全局结构体,保存了视频文件封装格式相关信息AVInputFormat&#xff1a;每种封装格式&#xff0c;对应一个该结构体AVStream[0]&#xff1a;视频文件中每个视频&#xff…

二十三种设计模式全面解析-职责链模式(Chain of Responsibility Pattern):解放代码责任链,提升灵活性与可维护性

在软件开发中&#xff0c;我们经常面临处理请求或事件的情况。有时候&#xff0c;我们需要将请求或事件依次传递给多个对象进行处理&#xff0c;但又不确定哪个对象最终会处理它。这时候&#xff0c;职责链模式&#xff08;Chain of Responsibility Pattern&#xff09;就能派上…

LongAdder功能和原理

AtomicLong能保证并发情况下计数的准确性&#xff0c;其内部通过CAS来解决并发安全性的问题。 AtomicLong的缺点&#xff1a; 可以看到在高并发情况下&#xff0c;当有大量线程同时去更新一个变量&#xff0c;任意一个时间点只有一个线程能够成功&#xff0c;绝大部分的线程在尝…

自动驾驶学习笔记(十)——Cyber通信

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 Cyber通信 编写代码 编译程序 运行…

FISCOBCOS入门(十)Truffle测试helloworld智能合约

本文带你从零开始搭建truffle以及编写迁移脚本和测试文件,并对测试文件的代码进行解释,让你更深入的理解truffle测试智能合约的原理,制作不易,望一键三连 在windos终端内安装truffle npm install -g truffle 安装truffle时可能出现网络报错,多试几次即可 truffle --vers…

虚函数 纯虚函数 抽象类

// ! 虚函数与纯虚函数 /*** 定义一个函数为虚函数&#xff0c;不代表这个函数为不被实现的函数* 是为了允许用基类的指针来调用子类的这个函数* 定义为一个函数为纯虚函数&#xff0c;才代表这个函数没有被实现* 定义一个纯虚函数是为了实现一个接口&#xff0c;起到规范作用&…

js 对象数组删除某一个特定的对象

for (let i 0; i < this.tableData.length; i) {if (this.tableData[i].id row.id) {this.tableData.splice(i, 1);i--; // 此处删除之后 将i向前递进一个} }

C#入门(2): namespace、类

namespace 在C#中&#xff0c;名称空间&#xff08;Namespace&#xff09;是一种包含类、结构、接口、枚举和委托的容器。名称空间可以帮助我们组织代码&#xff0c;并防止命名冲突。例如&#xff0c;两个开发团队可能都创建了名为File的类&#xff0c;但如果这两个类位于不同…

人力资源小程序

人力资源管理对于企业的运营至关重要&#xff0c;而如今随着科技的发展&#xff0c;制作一个人力资源小程序已经变得非常简单和便捷。在本文中&#xff0c;我们将为您介绍如何通过乔拓云网制作一个人力资源小程序&#xff0c;只需五个简单的步骤。 第一步&#xff1a;注册登录乔…

Arduino驱动DS18B20数字温度传感器(温湿度传感器)

目录 1、传感器特性 2、控制器和传感器连线图 3、驱动程序 DS18B20数字温度传感器是美国DALLAS公司生产的一总线数字温度传感器。其测温范围 -55℃~+125℃,固有测温分辨率0.5℃,支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温,测量结果以9~12位…

基于单片机的自动循迹小车(论文+源码)

1.系统设计 此次基于单片机的自动循迹小车的设计系统&#xff0c;结合循迹模块来共同完成本次设计&#xff0c;实现小车的循迹功能&#xff0c;其其整体框架如图2.1所示。其中&#xff0c;采用STC89C52单片机来作为核心控制器&#xff0c;负责将各个传感器等模块链接起来&…

QT小记:The QColor ctor taking ints is cheaper than the one taking string literals

这个警告意味着在使用 Qt 的 C 代码中&#xff0c;使用接受整数参数的 QColor 构造函数比使用接受字符串字面值的构造函数更有效率。 要解决这个警告&#xff0c;你可以修改你的代码&#xff0c;尽可能使用接受整数参数的 QColor 构造函数&#xff0c;而不是字符串字面值。例如…

216. 组合总和 III

原题链接&#xff1a;[216. 组合总和 III(https://leetcode.cn/problems/combination-sum-iii/submissions/483547922/) 全代码&#xff1a; class Solution { private:vector<vector<int>> result; // 存放结果集vector<int> path; // 符合条件的结果// t…

四旋翼无人机的飞行原理--【其利天下分享】

近年来&#xff0c;无人机在多领域的便捷应用促使其迅猛的发展&#xff0c;如近年来的多场战争&#xff0c;无人机的战场运用发挥得淋漓尽致。 下面我们针对生活中常见的四旋翼无人机的飞行原理做个基础的介绍&#xff0c;以飨各位对无人机有兴趣的朋友。 一&#xff1a;四旋翼…

基于变形卷积和注意机制的带钢表面缺陷快速检测网络DCAM-Net(论文阅读笔记)

原论文链接->DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism | IEEE Journals & Magazine | IEEE Xplore DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Base…

C++友元的理解

一、友元形式&#xff1a;友元函数&#xff0c;友元类 二、先说友元类&#xff0c;假设有A,B类&#xff0c;在B中声明A类为友元&#xff0c;那么A就可以访问B中的任意成员&#xff0c; 说明一下&#xff0c;也不是通过A直去访问B&#xff0c;其实还是B直接去访问&#xff0c;…

新中新身份证阅读器驱动下载sdk DKQ-A16D

读取操作 int nRet;string sMsg "";IDCardData idcardData new IDCardData();byte[] ctmp new byte[255];ReadCardAPI.Syn_SetPhotoPath(1, ref ctmp);setupDataFormate(1);nRet ReadCardAPI.Syn_OpenPort(Main_Form.m_iPort);if (nRet 0){DateTime startTime …

1334. 阈值距离内邻居最少的城市/Floyd 【leetcode】

1334. 阈值距离内邻居最少的城市 有 n 个城市&#xff0c;按从 0 到 n-1 编号。给你一个边数组 edges&#xff0c;其中 edges[i] [fromi, toi, weighti] 代表 fromi 和 toi 两个城市之间的双向加权边&#xff0c;距离阈值是一个整数 distanceThreshold。 返回能通过某些路径…