小样本目标检测(Few-Shot Object Detection)综述

背景

  1. 前言:我的未来研究方向就是这个,所以会更新一系列的文章,就关于FSOD,如果有相同研究方向的同学欢迎沟通交流,我目前研一,希望能在研一发文,目前也有一些想法,但是具体能不能实现还要在做的过程中慢慢评估和实现.写文的主要目的还是记录,避免重复劳动,我想用尽量简洁的语言把问题的关键描述出来,这样在我需要复习的时候也能快速回忆工作

小样本目标检测 - Few-Shot Object Detection - FSOD

  1. 小样本目标检测,英文名Few-Shot Object Detection,简称FSOD,论文里面一般都这么写,只有标题会规规矩矩的写全称,其他时候一般都是简写
  2. 注意:在搜索小样本目标检测时候,往往会给到一些关于小目标目标检测的文章,这两就不是一回事,小样本目标检测的小样本不是值样本的size小,而是指样本数量少;小目标目标检测才是真正意义上的目标size小,要精准的对目标进行分类和定位,感兴趣的搜一搜,我看到一篇基于yolo做的小目标目标检测,写的挺好的.
  3. 长尾效应:小样本目标检测的来由 - 数据的分布具有长尾效应,少部分类别大量的数据,而很多类别只有少量数据,如何正确的对这些数据做目标检测就是小样本要考虑的问题.
  4. 目前研究方向:小样本目标检测,未来可能的研究方向:开放世界的目标检测、增量小样本目标检测、广义小样本目标检测 - 总结就是希望以后能实时监测动态的不断出现的新类同时保留对基类的检测能力(基类就是有大量样本的类,新类就是样本数量少的亟待预测的类)

FSOD的两种学习策略

  1. 基于任务驱动的episode策略:基于元学习的方法、基于度量学习的方法
  2. 基于数据驱动的策略:基于迁移学习的方法,基于数据增强的方法在这里插入图片描述
  3. 基于任务驱动的episode指的是小样本任务分成N-way K-shot的任务(N个类,每个类K个样本),任务包含支持集和查询集,代表就是元学习(分为元训练阶段和元测试阶段),希望能够在元训练阶段学得一组泛化能力极强的参数,最终快速适应至新的元测试阶段,掌握学会学习的能力 - 后面会纤细介绍到元学习 - 目前FSOD的主流学习方法之一
  4. 基于数据驱动的学习方法:代表就是迁移学习,通过大量的数据训练好一个模型,然后在回归和分类的层进行微调,使得模型适应新类的检测

FSOD四种学习策略

元学习

  1. 基础方法:两段检测模型Fast RCNN - 通过候选区域生成网络(Region Proposal Network, RPN)生成感兴趣区域边界框(Region of Interests, RoIs),判断是前景还是背景,然后采用RoI池化将大小不同的感兴趣区域边界框处理为相同大小,最后将获得的RoIs进行边界框的分类和回归.
  2. 元训练:模型在一系列不同的任务上进行训练,这些任务被称为元任务。在元训练过程中,模型不是为了在单个任务上表现最佳,而是为了学习一种策略或知识,使其能够在遇到新任务时快速适应。这通常涉及到优化模型的参数,使其能够在新任务上仅通过少量的训练样本进行有效的学习。
  3. 元测试:元测试是元学习过程的评估阶段,模型在这个阶段被测试在新的、未见过的任务上的性能。这些新任务被设计为与元训练阶段中的任务相似,但不完全相同,以此来评估模型的泛化能力和快速适应新任务的能力。元测试的结果可以提供关于模型在实际应用中遇到新问题时可能表现如何的重要信息。

迁移学习

  1. 这个比较好理解 - 在大量数据上训练出一个模型,然后微调分类层和输出层.比如用yolo冻住前面的层然后微调后面的层即可.感觉新手入门用这个比较好,我也是这么打算的

数据增强

  1. 小样本问题就在于样本数量少,通过数据增强的方式扩充数据量,提升模型预测性能

度量学习

  1. 这个是我比较感兴趣的,和transformer有共同知识,可以一起学,把图像映射到嵌入空间,然后根据在嵌入空间的距离判断类别.

总结

  1. 写到这显得优点虎头蛇尾,但是想要毕其功于一役是不太现实的,那这篇文章就聚焦于简单的介绍一下小样本目标检测的四种方法吧,后面随着学习的深入进行肯定会展开细说的,感觉没写什么就快2000字了,写不动了就先这样吧,后面在学习的过程中慢慢展开
  2. 读完之后只要知道,FSOD - 元学习、迁移学习、数据增强、度量学习就ok,根据自己的方向再去衍生
  3. 新手上路,欢迎交流讨论
  4. 这个事情一定要坚持写下去,半途而废好多专题,回想起来挺后悔的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【移远QuecPython】EC800M物联网开发板的MQTT协议腾讯云数据上报

【移远QuecPython】EC800M物联网开发板的MQTT协议腾讯云数据上报 文章目录 导入库初始化设置MQTT注册回调订阅发布功能开启服务发送消息函数打包调用测试效果附录:列表的赋值类型和py打包列表赋值BUG复现代码改进优化总结 py打包 导入库 from TenCentYun import TX…

Clickhouse学习笔记(15)—— Clickhouse备份

手动备份 参考官网:Backup and Restore | ClickHouse Docs 简单来说,就是我们可以通过ALTER TABLE ... FREEZE PARTITION ...命令为表分区创建一个本地副本,然后这个副本硬链接到/var/lib/clickhouse/shadow/文件夹,因此其不会耗…

Unity性能优化分析篇

性能优化是游戏项目开发中一个重要环节。游戏帧率过低,手机发烫, 包体太大,低端机上跑不起来等, 这些都需要来做优化,不管过去,现在,未来,性能优化都是永恒的话题。 而性能优化首先要掌握的是性…

BIO、NIO、AIO三者的区别及其应用场景(结合生活例子,简单易懂)

再解释三者之前我们需要先了解几个概念: 阻塞、非阻塞:是相较于线程来说的,如果是阻塞则线程无法往下执行,不阻塞,则线程可以继续往下 执行。同步、异步:是相较于IO来说的,同步需要等待IO操作完…

Outlook邮件视图设置怎么修复

故障现象 Outlook邮箱显示不对 故障截图 故障原因 邮箱视图设置不对 解决方案 1、在Outlook上方工具栏找到视图按钮,以此选择视图→视图设置→列,打开选择的列 2、在视图→邮件预览里面,选择1行,在阅读格式选择靠右&#xff…

AI创作系统ChatGPT网站源码+支持最新GPT-Turbo模型+支持DALL-E3文生图/AI绘画源码

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

Nodejs操作缓存数据库-Redis

Hi I’m Shendi Nodejs专栏 Nodejs操作缓存数据库-Redis 在服务端开发中,缓存数据库也是不可或缺的,可以提高程序并发以及方便后续扩展,而目前最常用的莫过于Redis了 安装依赖 和之前的mysql一样,redis的依赖最常用的就是redis …

自学SLAM(8)《第四讲:相机模型与非线性优化》作业

前言 小编研究生的研究方向是视觉SLAM,目前在自学,本篇文章为初学高翔老师课的第四次作业。 文章目录 前言1.图像去畸变2.双目视差的使用3.矩阵微分4.高斯牛顿法的曲线拟合实验 1.图像去畸变 现实⽣活中的图像总存在畸变。原则上来说,针孔透…

51单片机应用从零开始(三)

51单片机应用从零开始(一)-CSDN博客 51单片机应用从零开始(二)-CSDN博客 详解 KEIL C51 软件的使用建立工程-CSDN博客 详解 KEIL C51 软件的使用设置工程编绎与连接程序-CSDN博客 目录 1. 用单片机控制第一个灯亮 2. 认识单片…

leetcode:476. 数字的补数

一、题目 476. 数字的补数 - 力扣(LeetCode) 函数原型: int findComplement(int num) 二、思路 将num的每一位取出来,取反后,乘以2的位次方,最终所有结果相加即可得到结果。 如何取出num的每一位&#xff1…

<MySQL> 查询数据进阶操作 -- 联合查询

目录 一、什么是笛卡尔积? 二、什么是联合查询? 三、内连接 3.1 简介 3.2 语法 3.3 更多的表 3.4 操作演示 四、外连接 4.1 简介 4.2 语法 4.3 操作演示 五、自连接 5.1 简介 5.2 自连接非必要不使用 六、子查询(嵌套查询) 6.1 简介 6.…

电源电压范 围宽、功耗小、抗干扰能力强的国产芯片GS069适用于电动工具等产品中,采用SOP8的封装形式封装

GS069电动工具直流调速电路是CMOS专用集成电路,具有电源电压范 围宽、功耗小、抗干扰能力强等特点。通过外接电阻网络,改变与之相接 的VMOS 管的输出,达到控制电动工具转速的作用。该电路输出幅值宽, 频率变化小,占空比…

自己动手实现一个深度学习算法——六、与学习相关的技巧

文章目录 1.参数的更新1)SGD2)Momentum3)AdaGrad4)Adam5)最优化方法的比较6)基于MNIST数据集的更新方法的比较 2.权重的初始值1)权重初始值不能为02)隐藏层的激活值的分布3&#xff…

04-学成在线之系统管理服务模块之查询数据字典表中的内容,前后端联调测试

前后端联调 配置前端环境 实际开发中先由后端工程师将接口设计好并编写接口文档并交给前端工程师,前后端的工程师就开始并行开发 前端开发人员先自己mock数据即使用假数据进行开发,当后端代码完成后前端工程师尝试请求后端接口获取数据然后渲染到页面 第一步: 首…

计算机网络之物理层

物理层 1. 物理层的基本概念 2.物理层下面的传输媒体 传输媒体可分为两类,一类是导引型传输媒体,另一类是非导引型传输媒体。 3.传输方式 3.1 串行传输和并行传输 串行传输:串行传输是指数据是一个比特依次发送的,因此在发送端…

C/C++轻量级并发TCP服务器框架Zinx-框架开发002: 定义通道抽象类

文章目录 2 类图设计3 时序图数据输入处理:输出数据处理总流程 4 主要实现的功能4.1 kernel类:基于epoll调度所有通道4.2 通道抽象类:4.3 标准输入通道子类4.4 标准输出通道子类4.5 kernel和通道类的调用 5 代码设计5.1 框架头文件5.2 框架实…

wx.canvasToTempFilePath生成图片保存到相册

微信小程序保存当前画布指定区域的内容导出生成指定大小的图片&#xff0c;记录一下 api&#xff1a;wx.canvasToTempFilePath 效果&#xff1a; 代码&#xff1a;wxml <canvas style"width: {{screenWidth}}px; height: {{canvasHeight}}px;" canvas-id"my…

2023.11.15 每日一题(AI自生成应用)【C++】【Python】【Java】【Go】 动态路径分析

目录 一、题目 二、解决方法 三、改进 一、题目 背景&#xff1a; 在一个城市中&#xff0c;有数个交通节点&#xff0c;每个节点间有双向道路相连。每条道路具有一个初始权重&#xff0c;代表通行该路段的成本&#xff08;例如时间、费用等&#xff09;。随着时间的变化&am…

CentOS修改root用户密码

一、适用场景 1、太久没有登录CentOS系统&#xff0c;忘记管理密码。 2、曾经备份的虚拟化OVA或OVF模板&#xff0c;使用模板部署新系统后&#xff0c;忘记root密码。 3、被恶意攻击修改root密码后的紧急修复。 二、实验环境 1、VMware虚拟化的ESXI6.7下&#xff0c;通过曾经…

javaweb---maventomcat使用教程

文章目录 今日内容0 复习昨日1 Maven1.0 引言1.1 介绍1.2 下载1.3 安装1.3.1 解压1.3.2 配置环境变量1.3.3 测试 1.4 仓库1.5 Maven配置1.5.1 修改仓库位置1.5.2 设置镜像 2 IDEA - MAVEN2.1 idea关联maven2.2 创建java项目2.3 java项目结构2.4 pom2.5 导入依赖2.5.1 查找依赖2…