1 准备数据
我们这次Spark-sql操作所有的数据均来自Hive,首先在Hive中创建表,并导入数据。一共有3张表:1张用户行为表,1张城市表,1张产品表。
1)将city_info.txt、product_info.txt、user_visit_action.txt上传到/opt/module/data
[atguigu@hadoop102 module]$ mkdir data
2)将创建对应的三张表
hive (default)>
CREATE TABLE `user_visit_action`(
`date` string,
`user_id` bigint,
`session_id` string,
`page_id` bigint,
`action_time` string,
`search_keyword` string,
`click_category_id` bigint,
`click_product_id` bigint, --点击商品id,没有商品用-1表示。
`order_category_ids` string,
`order_product_ids` string,
`pay_category_ids` string,
`pay_product_ids` string,
`city_id` bigint --城市id
)
row format delimited fields terminated by '\t';CREATE TABLE `city_info`(
`city_id` bigint, --城市id
`city_name` string, --城市名称
`area` string --区域名称
)
row format delimited fields terminated by '\t';CREATE TABLE `product_info`(
`product_id` bigint, -- 商品id
`product_name` string, --商品名称
`extend_info` string
)
row format delimited fields terminated by '\t';
3)并加载数据
hive (default)>
load data local inpath '/opt/module/data/user_visit_action.txt' into table user_visit_action;
load data local inpath '/opt/module/data/product_info.txt' into table product_info;
load data local inpath '/opt/module/data/city_info.txt' into table city_info;
4)测试一下三张表数据是否正常
hive (default)>
select * from user_visit_action limit 5;
select * from product_info limit 5;
select * from city_info limit 5;
2 需求:各区域热门商品Top3
2.1 需求简介
这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。
例如:
地区 | 商品名称 | 点击次数 | 城市备注 |
华北 | 商品A | 100000 | 北京21.2%,天津13.2%,其他65.6% |
华北 | 商品P | 80200 | 北京63.0%,太原10%,其他27.0% |
华北 | 商品M | 40000 | 北京63.0%,太原10%,其他27.0% |
东北 | 商品J | 92000 | 大连28%,辽宁17.0%,其他 55.0% |
2.2 思路分析
CREATE TABLE `user_visit_action`(
`date` string,
`user_id` bigint,
`session_id` string,
`page_id` bigint,
`action_time` string,
`search_keyword` string,
`click_category_id` bigint,
`click_product_id` bigint, --点击商品id,没有商品用-1表示。
`order_category_ids` string,
`order_product_ids` string,
`pay_category_ids` string,
`pay_product_ids` string,
`city_id` bigint --城市id
)
CREATE TABLE `city_info`(
`city_id` bigint, --城市id
`city_name` string, --城市名称
`area` string --区域名称
)
CREATE TABLE `product_info`(
`product_id` bigint, -- 商品id
`product_name` string, --商品名称
`extend_info` string
)
city_remark
IN: 城市名称 String
BUFF: totalcnt总点击量,Map[(cityName, 点击数量)]
OUT:城市备注 String
select
c.area, --地区
c.city_name, -- 城市
p.product_name, -- 商品名称
v.click_product_id -- 点击商品id
from user_visit_action v
join city_info c
on v.city_id = c.city_id
join product_info p
on v.click_product_id = p.product_id
where click_product_id > -1select
t1.area, --地区
t1.product_name, -- 商品名称count(*) click_count, -- 商品点击次数city_remark(t1.city_name) --城市备注
from t1
group by t1.area, t1.product_nameselect*,rank() over(partition by t2.area order by t2.click_count desc) rank -- 每个区域内按照点击量,倒序排行
from t2select*
from t3
where rank <= 3
使用Spark-SQL来完成复杂的需求,可以使用UDF或UDAF。
(1)查询出来所有的点击记录,并与city_info表连接,得到每个城市所在的地区,与 Product_info表连接得到商品名称。
(2)按照地区和商品名称分组,统计出每个商品在每个地区的总点击次数。
(3)每个地区内按照点击次数降序排列。
(4)只取前三名,并把结果保存在数据库中。
(5)城市备注需要自定义UDAF函数。
2.3 代码实现
package com.atguigu.sparksql.demo;import lombok.Data;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.*;
import org.apache.spark.sql.expressions.Aggregator;import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.TreeMap;
import java.util.function.BiConsumer;
import static org.apache.spark.sql.functions.udaf;public class Test01_Top3 {public static void main(String[] args) {// 1. 创建sparkConf配置对象SparkConf conf = new SparkConf().setAppName("sql").setMaster("local[*]");// 2. 创建sparkSession连接对象SparkSession spark = SparkSession.builder().enableHiveSupport().config(conf).getOrCreate();// 3. 编写代码// 将3个表格数据join在一起Dataset<Row> t1DS = spark.sql("select \n" +"\tc.area,\n" +"\tc.city_name,\n" +"\tp.product_name\n" +"from\n" +"\tuser_visit_action u\n" +"join\n" +"\tcity_info c\n" +"on\n" +"\tu.city_id=c.city_id\n" +"join\n" +"\tproduct_info p\n" +"on\n" +"\tu.click_product_id=p.product_id"); t1DS.createOrReplaceTempView("t1"); spark.udf().register("cityMark",udaf(new CityMark(),Encoders.STRING()));// 将区域内的产品点击次数统计出来Dataset<Row> t2ds = spark.sql("select \n" +"\tarea,\n" +"\tproduct_name,\n" +"\tcityMark(city_name) mark,\n" +"\tcount(*) counts\n" +"from\t\n" +"\tt1\n" +"group by\n" +"\tarea,product_name");// t2ds.show(false);
t2ds.createOrReplaceTempView("t2");// 对区域内产品点击的次数进行排序 找出区域内的top3
spark.sql("select\n" +"\tarea,\n" +"\tproduct_name,\n" +"\tmark,\n" +"\trank() over (partition by area order by counts desc) rk\n" +"from \n" +"\tt2").createOrReplaceTempView("t3");// 使用过滤 取出区域内的top3
spark.sql("select\n" +"\tarea,\n" +"\tproduct_name,\n" +"\tmark \n" +"from\n" +"\tt3\n" +"where \n" +"\trk < 4").show(50,false);// 4. 关闭sparkSession
spark.close();} @Datapublic static class Buffer implements Serializable {private Long totalCount;private HashMap<String,Long> map;public Buffer() {}public Buffer(Long totalCount, HashMap<String, Long> map) {
this.totalCount = totalCount;
this.map = map;}}public static class CityMark extends Aggregator<String, Buffer, String> {public static class CityCount {public String name;public Long count;public CityCount(String name, Long count) {
this.name = name;
this.count = count;}public CityCount() {}}public static class CompareCityCount implements Comparator<CityCount> {/**
* 默认倒序
* @param o1
* @param o2
* @return
*/
@Overridepublic int compare(CityCount o1, CityCount o2) {if (o1.count > o2.count) {return -1;} else return o1.count.equals(o2.count) ? 0 : 1;}} @Overridepublic Buffer zero() {return new Buffer(0L, new HashMap<String, Long>());}/**
* 分区内的预聚合
*
* @param b map(城市,sum)
* @param a 当前行表示的城市
* @return
*/
@Overridepublic Buffer reduce(Buffer b, String a) {HashMap<String, Long> hashMap = b.getMap();// 如果map中已经有当前城市 次数+1// 如果map中没有当前城市 0+1
hashMap.put(a, hashMap.getOrDefault(a, 0L) + 1); b.setTotalCount(b.getTotalCount() + 1L);return b;}/**
* 合并多个分区间的数据
*
* @param b1 (北京,100),(上海,200)
* @param b2 (天津,100),(上海,200)
* @return
*/
@Overridepublic Buffer merge(Buffer b1, Buffer b2) {
b1.setTotalCount(b1.getTotalCount() + b2.getTotalCount());HashMap<String, Long> map1 = b1.getMap();HashMap<String, Long> map2 = b2.getMap();// 将map2中的数据放入合并到map1
map2.forEach(new BiConsumer<String, Long>() {
@Overridepublic void accept(String s, Long aLong) {
map1.put(s, aLong + map1.getOrDefault(s, 0L));}});return b1;}/**
* map => {(上海,200),(北京,100),(天津,300)}
*
* @param reduction
* @return
*/
@Overridepublic String finish(Buffer reduction) {Long totalCount = reduction.getTotalCount();HashMap<String, Long> map = reduction.getMap();// 需要对map中的value次数进行排序ArrayList<CityCount> cityCounts = new ArrayList<>();// 将map中的数据放入到treeMap中 进行排序map.forEach(new BiConsumer<String, Long>() {
@Overridepublic void accept(String s, Long aLong) {
cityCounts.add(new CityCount(s, aLong));}}); cityCounts.sort(new CompareCityCount());ArrayList<String> resultMark = new ArrayList<>();Double sum = 0.0;// 当前没有更多的城市数据 或者 已经找到两个城市数据了 停止循环while (!(cityCounts.size() == 0) && resultMark.size() < 2) {CityCount cityCount = cityCounts.get(0);
resultMark.add(cityCount.name + String.format("%.2f",cityCount.count.doubleValue() / totalCount * 100) + "%");
cityCounts.remove(0);}// 拼接其他城市if (cityCounts.size() > 0) {
resultMark.add("其他" + String.format("%.2f", 100 - sum) + "%");}StringBuilder cityMark = new StringBuilder();for (String s : resultMark) {
cityMark.append(s).append(",");}return cityMark.substring(0, cityMark.length() - 1);} @Overridepublic Encoder<Buffer> bufferEncoder() {return Encoders.javaSerialization(Buffer.class);} @Overridepublic Encoder<String> outputEncoder() {return Encoders.STRING();}}
}