机器视觉人体跌倒检测系统 - opencv python 计算机竞赛

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器视觉人体跌倒检测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


课题背景和意义

在中国,每年在65岁以上老人中,平均每3人中就有1人发生意外跌倒,每年大约有9500位老年人死于旅行途中或跌倒;而平均年龄在65岁至69岁之间的人每200次跌倒中就有一次髋关节骨折。更严重的是,20%到30%的患者会出现中度到严重的并发症,很可能导致残疾。

而在中国,老年人口已经突破2.5亿,按照30%概览推算,每年有7500万人次的老年人摔倒。

1 实现方法

实现方法有两种,一种是基于计算机视觉的,一种是基于惯性传感器器件的。

这次主要还是介绍基于计算机视觉的,想了解或学习基于惯性传感器器件跌倒检测的同学联系学长,学长安排博客。

传统机器视觉算法

传统背景差分法,结合OpenCV中的图像高斯平滑预处理以及腐蚀、膨胀图像形态学处理方法,实现一个更符合实际场景需要的运动目标检测方法。实验效果比较分析表明,该目标检测算法较传统目标检测算法能够提取更加准确和完整的运动目标轮廓。
在这里插入图片描述

检测效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

背景差分法利用当前待处理视频帧图像与已经建模好的背景图像进行差分运算,利用阈值处理减少图像中的噪声干扰。优点是计算简单,且可以解决帧间差分法检测空洞的问题,得到的轮廓比较完整;
缺点是对于动态场景的适应能力不强, 对光照变化、 外来无关事物影响比较敏感。

基于机器学习的跌倒检测

人体行为辨识属于模式识别的分类决策的阶段,主要通过提取表征人体运动行为的特征向量,进而对人体的行为进行分析分类,最终用自然语言对其进行描述。有两种比较常见的方法:

(1) 基于模型的方法
基于模板的方法主要以人体模板作为主要的使用依据,可以通过对包含特定行为的视频帧序列进行转换的方法得到人体的模板,然后将被检测的人体行为与已经归类的人体行为模板进行匹配分类,从而得到行为识别的结果。基于模型的方法具有计算简单的优点,一般通过模型之间的距离比较完成人体行为的分类识别。缺点是需要大量足够的训练样本。

(2) 基于聚类的方法
基于聚类的方法把视频帧序列按照某种规则分类,在每一段进行特征的提取组成表示该段的特征矢量,进而通过聚类和相似度量等方法,将其中类别较少的段归为异常。常在处理离线状态下大量数据的异常检测问题时使用基于聚类的行为辨识方法。

SVM简介

支持向量机即常说的 SVM,全称是Support Vector
Machine。支持向量机是建立在统计学的VC维理论与结构化最小风险原理的基础上的,通过将向量映射到一个更高维的空间里,在这个空间建立一个最大间隔超平面,这个超平面被称为最优分类面,是支持向量机方法的理论基础。

SVM跌倒检测原理

我设计了一种运动物体行为辨识中采用基于两级SVM分类器的方法。

第一级SVM分类器用于判决运动物体是否处于非直立(下蹲、跌倒等)状态,提取物体的宽高比、最小包含物体矩形框面积、最小包含物体矩形框周长、运动物体高度等特征进行分类器的训练和分类判决。对于第一级分类器判决为非直立状态的图像帧,将它送入第二级SVM分类器进行分类判决。

第二级SVM分类器用于区分运动物体处于跌倒或其他的非直立状态,提取Zernike矩特征、运动物体的高度、运动物体的宽度、运动物体轮廓面积、运动物体轮廓周长等特征进行分类器的训练和分类判决。如果第二级
SVM 分类器判决为属于跌倒姿势状态类, 系统自动发出报警信息。

算法流程

在这里插入图片描述

算法效果

在这里插入图片描述

在这里插入图片描述

深度学习跌倒检测

介绍一个效果非常不错的网络,使用数据集在该网络下训练后得到的跌倒检测效果粉肠不错。

最终效果

在这里插入图片描述

网络原理

在这里插入图片描述
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135332.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

申克SCHENCK动平衡机显示器维修CAB700系统控制面板

适用电枢转子的卧式平衡机,高测量率,自动测量循环,自动定标完整的切槽计数可选项,CAB700动平衡测量系统两种皮带驱动方式(上置式或下置式)适用于站立或坐姿操作的人性化工作台设计。 动平衡机申克控制器面板维修型号:V…

com.genuitec.eclipse.springframework.springnature

Your IDE is missing natures to properly support your projects. Some extensions on the eclipse marketplace can be installed to support those natures. com.genuitec.eclipse.springframework.springnature 移除 <nature>om.genuitec.eclipse.springframework.…

Django框架的推导

文章目录 Web应用简介什么是Web框架&#xff1f;什么是Web&#xff1f;应用程序的两种模式Web应用程序的优缺点 手写Web框架HTTP协议的相关知识1.四大特性2.请求数据格式3.响应数据格式 手写框架 使用wsgiref模块基于wsgiref模块搭建Web框架(最初版)基于wsgiref模块搭建Web框架…

unity打AB包,AssetBundle预制体与图集(一)

第一步&#xff1a;打AB包 1、先创建一个AB包的按钮&#xff0c;如图 新建一个脚本 public class BulidBundle : Editor {[MenuItem("TOOL/BuildBundle")]public static void BuildAndroidBundle(){} }创建目录 public static void BuildAndroidBundle(){// 设置…

Leetcode 第 369 场周赛题解

Leetcode 第 369 场周赛题解 Leetcode 第 369 场周赛题解题目1&#xff1a;2917. 找出数组中的 K-or 值思路代码复杂度分析 题目2&#xff1a;2918. 数组的最小相等和思路代码复杂度分析 题目3&#xff1a;2919. 使数组变美的最小增量运算数思路代码复杂度分析 题目4&#xff1…

Lec13 Sleep Wake up

进程切换的流程 一个进程出于某种原因想要进入休眠状态&#xff0c;比如说出让CPU或者等待数据&#xff0c;它会先获取自己的锁&#xff1b;之后进程将自己的状态从RUNNING设置为RUNNABLE&#xff1b;之后进程调用switch函数&#xff0c;其实是调用sched函数在sched函数中再调…

2023年11月编程语言流行度排名

点击查看最新编程语言流行度排名&#xff08;每月更新&#xff09; 2023年11月编程语言流行度排名 编程语言流行度排名是通过分析在谷歌上搜索语言教程的频率而创建的 一门语言教程被搜索的次数越多&#xff0c;大家就会认为该语言越受欢迎。这是一个领先指标。原始数据来自…

折叠旗舰新战局:华为先行,OPPO接棒

乌云中的曙光&#xff0c;总能带给人希望。 全球智能手机出货量已经连续八个季度下滑&#xff0c;行业里的乌云挥之不散。不过&#xff0c;也能看到高端市场逆势上涨&#xff0c;散发光亮。个中逻辑在于&#xff0c;当前换机周期已经达到了34个月&#xff0c;只有创新产品才能…

使用遗传算法优化BP神经网络实现非线性函数拟合

大家好&#xff0c;我是带我去滑雪&#xff01; 非线性函数拟合是一种用于找到与给定数据点集合最好匹配的非线性函数的过程。非线性函数拟合通常用于以下情况&#xff1a; 数据趋势不是线性的&#xff1a;当数据点之间的关系不能用线性方程来表示时&#xff0c;需要使用非线性…

快速解决mfc140u.dll丢失问题,找不到mfc140u.dll修复方法分享

在计算机使用过程中&#xff0c;我们可能会遇到各种问题&#xff0c;其中之一就是某些dll文件丢失。最近&#xff0c;我就遇到了一个关于mfc140u.dll丢失的问题。mfc140u.dll是Microsoft Foundation Class&#xff08;MFC&#xff09;库中的一个动态链接库文件&#xff0c;它包…

JSP通用材料收集归档系统eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 通用材料收集归档系统是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c…

接口---默认方法

用户操作界面 package Default;public class Dome02interface {public static void main(String[] args) {// 创建实现类对象 // MyInterfaceDefaultA A new MyInterfaceDefaultA(); // A.method01(); // System.out.println("--------------"); // 调用默认方…

【C++】多态(重写)的实现过程及其原理【核心知识点精讲】(22)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.基础知识介绍1&#xff09;虚函数&a…

SpringBoot整合Mybatis+人大金仓(kingbase8)

陈老老老板&#x1f9b8; &#x1f468;‍&#x1f4bb;本文专栏&#xff1a;国产数据库-人大金仓&#xff08;kingbase8&#xff09;&#xff08;主要讲一些人大金仓数据库相关的内容&#xff09; &#x1f468;‍&#x1f4bb;本文简述&#xff1a;本文讲一下Mybatis框架整合…

Centos7下搭建H3C log服务器

rsyslogH3C 安装rsyslog服务器 关闭防火墙 systemctl stop firewalld && systemctl disable firewalld关闭selinux sed -i s/enforcing/disabled/ /etc/selinux/config && setenforce 0centos7服务器&#xff0c;通过yum安装rsyslog yum -y install rsysl…

Swift语言配合HTTP写的一个爬虫程序

下段代码使用Embassy库编写一个Swift爬虫程序来爬取jshk的内容。我会使用proxy_host为duoip&#xff0c;proxy_port为8000的爬虫IP服务器。 使用Embassy库编写一个Swift爬虫程序可以实现从网页上抓取数据的功能。下面是一个简单的步骤&#xff1a; 1、首先&#xff0c;需要在X…

vue使用websocket与springboot通信

WebSocket是HTML5下一种新的协议&#xff0c;它实现了浏览器与服务器全双工通信&#xff0c;能更好的节省服务器资源和带宽并达到实时通讯的目的 在很多项目中&#xff0c;都要用到websocket&#xff0c;使得前端页面与后端页进行实时通信&#xff0c;例如&#xff0c;实时查询…

Vue3:自定义图标选择器(包含 SVG 图标封装)

文章目录 一、准备工作&#xff08;在 Vue3 中使用 SVG&#xff09;二、封装 SVG三、封装图标选择器四、Demo 效果预览&#xff1a; 一、准备工作&#xff08;在 Vue3 中使用 SVG&#xff09; 本文参考&#xff1a;https://blog.csdn.net/houtengyang/article/details/1290431…

Tcl语言:SDC约束命令create_generated_clock详解(下)

相关阅读 Tcl语言https://blog.csdn.net/weixin_45791458/category_12488978.html?spm1001.2014.3001.5482 设定生成时钟特性 前文的末尾提到&#xff0c;当使用-divide by或-multiply_by选项创建生成时钟时&#xff0c;会根据master clock的时钟周期派生出生成时钟的周期&am…

yum工具的使用

yum工具的使用 rpm的弊端 前面我们讲了下rpm&#xff0c;那么rpm有什么弊端呢&#xff1f;其弊端是显而易见的&#xff0c;当用rpm安装软件时&#xff0c;若遇到有依赖关系的软件&#xff0c;必须先安装依赖的软件才能继续安装我们要安装的软件&#xff0c;当依赖关系很复杂的…