Python入门【变量的作用域(全局变量和局部变量)、参数的传递、浅拷贝和深拷贝、参数的几种类型 】(十一)

 👏作者简介:大家好,我是爱敲代码的小王,CSDN博客博主,Python小白
📕系列专栏:python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发
📧如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀
🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
🍂博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人

🔥🔥🔥 python入门到实战专栏:从入门到实战
🔥🔥🔥 Python爬虫开发专栏:从入门到实战
🔥🔥🔥 Python办公自动化专栏:从入门到实战
🔥🔥🔥 Python数据分析专栏:从入门到实战
🔥🔥🔥 Python前后端开发专栏:从入门到实战    

目录

变量的作用域(全局变量和局部变量)

参数的传递

浅拷贝和深拷贝

参数的几种类型 


变量的作用域(全局变量和局部变量)

变量起作用的范围称为变量的作用域,不同作用域内同名变量之间 互不影响。变量分为:全局变量、局部变量。

全局变量:

1 在函数和类定义之外声明的变量。作用域为定义的模块,从定义位置开始直到模块结束。

2 全局变量降低了函数的通用性和可读性。应尽量避免全局变量的使用。

3 要在函数内改变全局变量的值,使用 global 声明一下

局部变量:

1 在函数体中(包含形式参数)声明的变量。

2 局部变量的引用比全局变量快,优先考虑使用

3 如果局部变量和全局变量同名,则在函数内隐藏全局变量,只使用同名的局部变量

【操作】全局变量的作用域测试

a = 100         #全局变量
def f1():global a    #如果要在函数内改变全局变量的值,增加global关键字声明print(a)    #打印全局变量a的值    a = 300      f1()
f1()
print(a)

 执行结果:

100

300

【操作】全局变量和局部变量同名测试

a=100
def f1():a = 3      #同名的局部变量print(a)f1()    
print(a)    #a仍然是100,没有变化

 执行结果:

3
100

【操作】 输出局部变量和全局变量

a = 100
def f1(a,b,c):print(a,b,c)print(locals())            #打印输出的局部变量print("#"*20)print(globals())           #打印输出的全局变量
f1(2,3,4)

输出结果:

2 3 4{'c': 4, 'b': 3, 'a': 2}####################
{'__name__': '__main__', '__doc__': None,
'__package__': None, '__loader__': <class
'_frozen_importlib.BuiltinImporter'>,
'__spec__': None, '__annotations__': {},
'__builtins__': <module 'builtins' (builtin)>, '__file__':
'E:\\PythonExec\\if_test01.py', 'a': 100,
'f1': <function f1 at 0x0000000002BB8620>}

实时效果反馈

1. 如下关于全局变量和局部变量的说法,错误的是:

A 全局变量:在函数和类定义之外声明的变量。作用域从定义位 置开始直到模块结束

B 局部变量:在函数体中(包含形式参数)声明的变量

C 如果局部变量和全局变量同名,则在函数内隐藏全局变量,只 使用同名的局部变量

D 局部变量的引用和全局变量一样快

局部变量和全局变量效率测试

局部变量的查询和访问速度比全局变量快,优先考虑使用,尤其是在循环的时候。

 

在特别强调效率的地方或者循环次数较多的地方,可以通过将全局

变量转为局部变量提高运行速度。

【操作】测试局部变量和全局变量效率 

import time
a = 1000
def test01():start = time.time()global afor i in range(100000000):a += 1end = time.time()print("耗时{0}".format((end-start)))
def test02():c = 1000start = time.time()for i in range(100000000):c += 1end = time.time()print("耗时{0}".format((end-start)))
test01()
test02()
print(globals())

运行结果:

耗时5.278882026672363
耗时3.6103720664978027

参数的传递

函数的参数传递本质上就是:从实参到形参的赋值操作。Python中 “一切皆对象”,所有的赋值操作都是“引用的赋值”。所以,Python 中参数的传递都是“引用传递”,不是“值传递”。

具体操作时分为两类:

1 对“可变对象”进行“写操作”,直接作用于原对象本身。

2 对“不可变对象”进行“写操作”,会产生一个新的“对象空间”,并用新的值填充这块空间。 

可变对象有: 字典、列表、集合、自定义的对象等

不可变对象有: 数字、字符串、元组、function等 

传递可变对象的引用

传递参数是可变对象(例如:列表、字典、自定义的其他可变对象 等),实际传递的还是对象的引用。在函数体中不创建新的对象拷贝,而是可以直接修改所传递的对象。

【操作】参数传递:传递可变对象的引用

b = [10,20]
def f2(m):print("m:",id(m))       #b和m是同一个对象m.append(30)    #由于m是可变对象,不创建对象拷贝,直接修改这个对象
f2(b)
print("b:",id(b))
print(b)

执行结果:

m: 45765960
b: 45765960
[10, 20, 30]

实时效果反馈

1. 列表是可变对象,关于参数传递可变对象,说法错误的是:

b = [10,20]
def f2(m):print("m:",id(m))    m.append(30)  
f2(b)

A b和m是同一个对象

B b和m是不同的对象

C 对“可变对象”进行“写操作”,直接作用于原对象本身

D f2(b) 把 b 传递给 m 的过程中,没有创建对象的拷贝

传递不可变对象的引用

传递参数是不可变对象(例如: int 、 float 、字符串、元组、布尔值),实际传递的还是对象的引用。在”赋值操作”时,由于不可变 对象无法修改,系统会新创建一个对象。

【操作】参数传递:传递不可变对象的引用

a = 100
def f1(n):print("n:",id(n))        #传递进来的是a对象的地址n = n+200            #由于a是不可变对象,因此创建新的对象nprint("n:",id(n))    #n已经变成了新的对象print(n)
f1(a)
print("a:",id(a))

执行结果:

n: 1663816464
n: 46608592
300
a: 1663816464

显然,通过 id 值我们可以看到 n 和 a 一开始是同一个对象。给n赋值 后,n是新的对象。

实时效果反馈

1. 数字是不可变对象,关于参数传递不可变对象并且要修改原对 象,说法错误的是:

a = 100
def f1(n):n = n+200    
f1(a)

A 代码执行完后, b 和 n 是同一个对象

B 代码执行完后, b 和 n 是不同的对象

C 对“不可变对象”进行“写操作”,创建新的对象

D 执行 n=n+200 时,创建了新的对象

浅拷贝和深拷贝

 为了更深入的了解参数传递的底层原理,我们需要讲解一下“浅拷贝 和深拷贝”。我们可以使用内置函数: copy (浅拷贝)、 deepcopy (深拷贝)。

 1、浅拷贝:拷贝对象,但不拷贝子对象的内容,只是拷贝子对象的引用。

2、深拷贝:拷贝对象,并且会连子对象的内存也全部(递归)拷贝一份,对子对象的修改不会影响源对象

#测试浅拷贝和深拷贝
import copy
def testCopy():'''测试浅拷贝'''a = [10, 20, [5, 6]]b = copy.copy(a)print("a", a)print("b", b)b.append(30)b[2].append(7)print("浅拷贝......")print("a", a)print("b", b)
def testDeepCopy():'''测试深拷贝'''a = [10, 20, [5, 6]]b = copy.deepcopy(a)print("a", a)print("b", b)b.append(30)b[2].append(7)print("深拷贝......")print("a", a)print("b", b)
testCopy()
print("*************")
testDeepCopy()

运行结果:

a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
浅拷贝......
a [10, 20, [5, 6, 7]]
b [10, 20, [5, 6, 7], 30]
a [10, 20, [5, 6]]
b [10, 20, [5, 6]]
深拷贝......
a [10, 20, [5, 6]]
b [10, 20, [5, 6, 7], 30]

实时效果反馈

1. 如下关于浅拷贝和深拷贝,错误的是:

A 浅拷贝使用函数: copy (浅拷贝)

B 浅拷贝:拷贝对象,也全部拷贝子对象

C 深拷贝:拷贝对象,也全部拷贝子对象

D 深拷贝使用函数: deepcopy (深拷贝)

传递不可变对象包含的子对象是可变的情况

#传递不可变对象时。不可变对象里面包含的子对象是可变的。则方法内修改了这个可变对象,源对象也发生了变化。
a = (10,20,[5,6])
print("a:",id(a))
def test01(m):print("m:",id(m))m[2][0] = 888print(m)print("m:",id(m))
test01(a)
print(a)

运行结果:

a: 41611632

m: 41611632 (10, 20, [888, 6])

m: 41611632 (10, 20, [888, 6])

参数的几种类型 

位置参数 

函数调用时,实参默认按位置顺序传递,需要个数和形参匹配。按 位置传递的参数,称为:“位置参数”。

【操作】测试位置参数

def f1(a,b,c):print(a,b,c)
f1(2,3,4)
f1(2,3)     #报错,位置参数不匹配

执行结果:

2 3 4
Traceback (most recent call last):File "E:\PythonExec\if_test01.py", line 5,
in <module>f1(2,3)
TypeError: f1() missing 1 required positional
argument: 'c

默认值参数

我们可以为某些参数设置默认值,这样这些参数在传递时就是可选 的。称为“默认值参数”。默认值参数放到位置参数后面。

【操作】测试默认值参数

def f1(a,b,c=10,d=20):   #默认值参数必须位于普通位置参数后面print(a,b,c,d)
f1(8,9)
f1(8,9,19)
f1(8,9,19,29)

执行结果:

8 9 10 20
8 9 19 20
8 9 19 29

命名参数

我们也可以按照形参的名称传递参数,称为“命名参数”,也称“关键 字参数”。

def f1(a,b,c):print(a,b,c)
f1(8,9,19)          #位置参数
f1(c=10,a=20,b=30)  #命名参数

执行结果:

8 9 19
20 30 10

实时效果反馈

1. 如下函数定义后,调用时,错误的是:

def f1(a,b,c=10,d=20):   #默认值参数必须位于普通位置参数后面print(a,b,c,d)

A f1(5)

B f1(5,6)

C f1(5,6,7,8)

D f1(b=5,a=6,d=7,c=8)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无涯教程-jQuery - wrapInner( html )方法函数

wrapInner(html)方法使用HTML结构包装每个匹配元素(包括文本节点)的内部子内容。 wrapInner( html ) - 语法 selector.wrapInner( html ) 这是此方法使用的所有参数的描述- html - 将动态创建并环绕目标的HTML字符串。 wrapInner( html ) - 示例 以下是一个简单的示例…

Jupyter Notbook无法刷新.bashrc中的环境变量

Jupyter Notbook无法刷新.bashrc中的环境变量 原因解决方法 原因 在Linux系统中&#xff0c;在.bashrc中添加环境变量后&#xff0c;打开jupyter notebook发现无法加载添加的环境变量。这是因为.bashrc只对bash起作用&#xff0c;如果使用GUI软件直接访问&#xff0c;是无法加…

51单片机:数码管和矩阵按键

目录 一:动态数码管模块 1:介绍 2:共阴极和共阳极 A:共阴极 B:共阳极 C:转化表 3:74HC138译码器 4:74HC138译码器控制动态数码管 5:数码管显示完整代码 二:矩阵按键模块 1:介绍 2:原理图 3:矩阵按键代码 一:动态数码管模块 1:介绍 LED数码管&#xff1a;数码管是一种…

NLP实践——Llama-2 多轮对话prompt构建

NLP实践——Llama-2 多轮对话prompt构建 1. 问题提出2. prompt的正确形式3. 效果测试4. 结尾 1. 问题提出 最近&#xff0c;META开源了Llama-2模型&#xff0c;受到了广泛的关注和好评&#xff0c;然而&#xff0c;在官方给的使用说明中&#xff0c;并没有对使用方法进行特别细…

Verilog语法学习——LV10_使用函数实现数据大小端转换

LV10_使用函数实现数据大小端转换 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 在数字芯片设计中&#xff0c;经常把实现特定功能的模块编写成函数&…

ES自定义分词,对数字进行分词

需求&#xff1a;需要将下面类似的数据分词为&#xff1a;GB,T,32403,1,2015 "text": "GB/T 32403.1-2015"1、调研 现在用的ik分词器效果 POST _analyze {"analyzer": "ik_max_word","text": "GB/T 32403.1-2015&qu…

Java 反射

反射 Java 的反射&#xff08; reflection &#xff09;机制是指在程序的运行状态中&#xff0c;可以构造任意一个类的对象&#xff0c;可以了解任意一个对象所属的类&#xff0c;可以了解任意一个类的成员变量和方法&#xff0c;可以调用任意一个对象的属性和方法。这种动态获…

一.安装k8s环境

1.初始操作 默认3台服务器都执行 # 关闭防火墙 systemctl stop firewalld systemctl disable firewalld# 关闭selinux sed -i s/enforcing/disabled/ /etc/selinux/config # 永久 setenforce 0 # 临时# 关闭swap swapoff -a # 临时 sed -ri s/.*swap.*/#&/ /etc/fstab…

QT--day3(定时器事件、对话框)

头文件代码&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> //定时器事件处理时间头文件 #include <QTime> //时间类 #include <QtTextToSpeech> #include <QPushButton> #include <QLabel&g…

【数据结构】实验六:队列

实验六 队列 一、实验目的与要求 1&#xff09;熟悉C/C语言&#xff08;或其他编程语言&#xff09;的集成开发环境&#xff1b; 2&#xff09;通过本实验加深对队列的理解&#xff0c;熟悉基本操作&#xff1b; 3&#xff09; 结合具体的问题分析算法时间复杂度。 二、…

ubuntu23.04 flush DNS caches

如何在Ubuntu 23.04中刷新DNS缓存 现在&#xff0c;如果你运行的是Ubuntu 23.04&#xff0c;"系统解决 "的方法将不再适用于你。让我们检查一下你目前的缓存大小。打开你的Ubuntu终端&#xff0c;运行以下command&#xff1a; resolvectl statistics现在&#xff0c…

mysql主从同步怎么跳过错误

今天介绍两种mysql主从同步跳过错误的方法&#xff1a; 一、两种方法介绍 1、跳过指定数量的事务&#xff1a; mysql>slave stop; mysql>SET GLOBAL SQL_SLAVE_SKIP_COUNTER 1 #跳过一个事务 mysql>slave start2、修改mysql的配置文件&#xff0c;通过slav…

【QT 网络云盘客户端】——实现文件属性窗口

目录 文件属性对话框 设置字体样式 获取文件的信息 显示文件属性对话框 当我们点击文件中的属性&#xff0c;则会弹出一个属性对话框&#xff1a; 实现过程&#xff1a; 0.设置 属性 菜单项的槽函数。 1.鼠获取鼠标选中的QListWidgetItem,它包含 图标和文件名 2.根据文件…

POLARDB IMCI 白皮书 云原生HTAP 数据库系统 一 数据压缩和打包处理与数据更新

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…

十一、数据结构——树(Tree)的基本概念

数据结构之树(Tree) 目录 树的基本概念树的分类树的基本操作树的应用结语 树的基本概念 树是一种重要的数据结构&#xff0c;它在计算机科学中被广泛应用。树的特点是以分层的方式存储数据&#xff0c;具有层次结构&#xff0c;类似于现实生活中的树状结构。在树中&#xff…

python与深度学习(十):CNN和cifar10二

目录 1. 说明2. cifar10的CNN模型测试2.1 导入相关库2.2 加载数据和模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章训练的模型进行测试。首…

JPA之Hibernate

JPA 定义&#xff1a;是 JavaEE 中一组用于持久化数据的 API&#xff0c;它提供了一种标准的 ORM 规范&#xff0c;用于 Java 对象映射到数据库中。 JPA 的开发是为了简化企业级应用程序的开发&#xff0c;降低应用程序与数据库之间的耦合度&#xff0c;并提高应用程序的可维护…

【Vuvuzela 声音去噪算法】基于流行的频谱减法技术的声音去噪算法研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

WEB:unseping

背景知识 php序列化和反序列化 命令执行绕过方式 题目 进行代码审计 可知为反序列化 整体是创建case类&#xff0c;可接受post传来的ctf值 _consturuct函数,是在函数调动前启用&#xff0c;构造了$method和$args两个变量。 _dexstruct函数在变量摧毁的时使用&#xff0c;所…

【嵌入式学习笔记】嵌入式基础10——STM32时钟配置

1.认识时钟树 简单来说&#xff0c;时钟是具有周期性的脉冲信号&#xff0c;最常用的是占空比50%的方波 1.1.F1的时钟树 1.2.F4的时钟树(407为例) 1.3.F7的时钟树 1.4.H7的时钟树 2.配置系统时钟(F1为例) 2.1.系统时钟配置步骤 配置HSE VALUE&#xff1a;告诉HAL库外部晶振…