python与深度学习(十):CNN和cifar10二

目录

  • 1. 说明
  • 2. cifar10的CNN模型测试
    • 2.1 导入相关库
    • 2.2 加载数据和模型
    • 2.3 设置保存图片的路径
    • 2.4 加载图片
    • 2.5 图片预处理
    • 2.6 对图片进行预测
    • 2.7 显示图片
  • 3. 完整代码和显示结果
  • 4. 多张图片进行测试的完整代码以及结果

1. 说明

本篇文章是对上篇文章训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。

2. cifar10的CNN模型测试

2.1 导入相关库

在这里导入需要的第三方库如cv2,如果没有,则需要自行下载。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10

2.2 加载数据和模型

把cifar10数据集进行加载,并且把训练好的模型也加载进来。

# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer","dog", "frog", "horse", "ship", "truck"]# 加载fashion数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_cifar10_4.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')

2.3 设置保存图片的路径

将数据集的某个数据以图片的形式进行保存,便于测试的可视化。
在这里设置图片存储的位置。


# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1000.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[1000]).save(test_file_path)

在书写完上述代码后,需要在代码的当前路径下新建一个imgs的文件夹用于存储图片,如下。
在这里插入图片描述

执行完上述代码后就会在imgs的文件中可以发现多了一张图片,如下(下面测试了很多次)。
在这里插入图片描述

2.4 加载图片

采用cv2对图片进行加载,用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是三通道的,因此不只用取单通道,而是三通道。

# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(32,32)
test_img = cv2.resize(test_img, (32, 32))

2.5 图片预处理

对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。

# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 32, 32, 3)

2.6 对图片进行预测

将图片输入给训练好我的模型并且进行预测。
预测的结果是10个概率值,所以需要进行处理, np.argmax()是得到概率值最大值的序号,也就是预测的数字。

# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])

2.7 显示图片

对预测的图片进行显示,把预测的数字显示在图片上。
下面5行代码分别是创建窗口,设定窗口大小,显示图片,停留图片,清除内存。

# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()

3. 完整代码和显示结果

以下是完整的代码和图片显示结果。

from tensorflow import keras
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np
# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10
# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer","dog", "frog", "horse", "ship", "truck"]# 加载fashion数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_cifar10_4.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test1000.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[1000]).save(test_file_path)
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(32,32)
test_img = cv2.resize(test_img, (32, 32))
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 32, 32, 3)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别:', class_names[class_id])
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 [==============================] - 0s 173ms/step
test.png的预测概率: [[5.1407650e-08 1.3184264e-07 1.4382408e-05 3.0730411e-03 6.6092167e-079.9690622e-01 3.4352513e-07 4.4902617e-06 5.1169474e-07 1.9515875e-07]]
test.png的预测概率: 0.9969062
test.png的所属类别: dog

在这里插入图片描述

4. 多张图片进行测试的完整代码以及结果

为了测试更多的图片,引入循环进行多次测试,效果更好。

from tensorflow import keras
from keras.datasets import cifar10
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw  # PIL就是pillow包(保存图像)
import numpy as np# cifar10数据集列表
class_names = ["airplane", "automobile", "bird", "cat", "deer","dog", "frog", "horse", "ship", "truck"]
# 加载mnist数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 加载cnn_fashion.h5文件,重新生成模型对象
recons_model = keras.models.load_model('cnn_cifar10_4.h5')prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):path1 = input("input the test picture path:")# 创建图片保存路径test_file_path = os.path.join(sys.path[0], 'imgs', path1)# 存储测试数据的任意一个num = int(input("input the test picture num:"))Image.fromarray(x_test[num]).save(test_file_path)# 加载本地test.png图像image = cv2.imread(test_file_path)# 复制图片test_img = image.copy()# 将图片大小转换成(28,28)test_img = cv2.resize(test_img, (32, 32))# 预处理: 归一化 + reshapenew_test_img = (test_img/255.0).reshape(1, 32, 32, 3)# 预测y_pre_pro = recons_model.predict(new_test_img, verbose=1)# 哪一类数字class_id = np.argmax(y_pre_pro, axis=1)[0]print('test.png的预测概率:', y_pre_pro)print('test.png的预测概率:', y_pre_pro[0, class_id])print('test.png的所属类别:', class_names[class_id])# # 显示cv2.namedWindow('img', 0)cv2.resizeWindow('img', 500, 500)  # 自己设定窗口图片的大小cv2.imshow('img', image)cv2.waitKey()cv2.destroyAllWindows()
input the number of test picture :2
input the test picture path:90.jpg
input the test picture num:1
1/1 [==============================] - 0s 149ms/step
test.png的预测概率: [[1.5192369e-05 1.2153896e-03 4.3699760e-10 8.3202184e-07 6.7535249e-092.5758654e-10 2.1669943e-07 7.0233480e-12 9.9875784e-01 1.0427103e-05]]
test.png的预测概率: 0.99875784
test.png的所属类别: ship

在这里插入图片描述

input the test picture path:91.jpg
input the test picture num:3
1/1 [==============================] - 0s 144ms/step
test.png的预测概率: [[9.3968987e-01 7.0652168e-06 8.8076144e-03 3.7453551e-04 2.6135262e-029.9803242e-07 9.7372030e-08 1.5685426e-07 2.4942497e-02 4.1973537e-05]]
test.png的预测概率: 0.9396899
test.png的所属类别: airplane

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Vuvuzela 声音去噪算法】基于流行的频谱减法技术的声音去噪算法研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

WEB:unseping

背景知识 php序列化和反序列化 命令执行绕过方式 题目 进行代码审计 可知为反序列化 整体是创建case类,可接受post传来的ctf值 _consturuct函数,是在函数调动前启用,构造了$method和$args两个变量。 _dexstruct函数在变量摧毁的时使用,所…

【嵌入式学习笔记】嵌入式基础10——STM32时钟配置

1.认识时钟树 简单来说,时钟是具有周期性的脉冲信号,最常用的是占空比50%的方波 1.1.F1的时钟树 1.2.F4的时钟树(407为例) 1.3.F7的时钟树 1.4.H7的时钟树 2.配置系统时钟(F1为例) 2.1.系统时钟配置步骤 配置HSE VALUE:告诉HAL库外部晶振…

2021 年高教社杯全国大学生数学建模竞赛 E 题 中药材的鉴别 第一题

目录 1.数据预处理 1.1 数据基本信息探索 1.2 数据可视化 1.3 异常值处理 2. 数据特征值提取 2.1 数据标准化 2.2 PCA提取特征值 3. 数据聚类鉴别药材种类 3.1 肘部图确定K值 3.2 轮廓系数图确定K值 3.3 数据聚类 3.4 聚类结果可视化 4. 研究不同种类药材…

CentOS下 Docker、Docker Compose 的安装教程

Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 Docker Compose是用于定义…

C语言基础入门详解一

前些天发现了一个蛮有意思的人工智能学习网站,8个字形容一下"通俗易懂,风趣幽默",感觉非常有意思,忍不住分享一下给大家。 👉点击跳转到教程 前言: 初识C语言 //#include 相当于java的import,stdio全称:st…

PostMan+Jmeter+QTP工具介绍及安装

目录 一、PostMan介绍​编辑 二、下载安装 三、Postman与Jmeter的区别 一、开发语言区别: 二、使用范围区别: 三、使用区别: 四、Jmeter安装 附一个详细的Jmeter按照新手使用教程,感谢作者,亲测有效。 五、Jme…

微信读书:长期投资(阅读摘录)

微信读书:长期投资(阅读摘录) 所有投资高手的时间精力都投向了这三大块:行动、思考、读书。 我们把耐心发挥到了极致,这正是价值投资的关键特征之一。 通常在牛市中想要跑赢大盘,难度非常大。 实际上&am…

深度剖析C++ 异常机制

传统排错 我们早在 C 程序里面传统的错误处理手段有: 终止程序,如 assert;缺陷是用户难以接受,说白了就是一种及其粗暴的手法,比如发生内存错误,除0错误时就会终止程序。 返回错误码。缺陷是需要我们自己…

【Docker consul的容器服务更新与发现】

文章目录 一、Consul 的简介(1)什么是服务注册与发现(2)什么是consul 二、consul 部署1、consul服务器1. 建立 Consul 服务2. 查看集群信息3. 通过 http api 获取集群信息 2、registrator服务器1. 安装 Gliderlabs/Registrator2. …

Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

这是CVPR2023的一篇用diffusion先验做图像修复和图像增强的论文 之前有一篇工作做了diffusion先验(Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song, “Denoising diffusion restoration models,” arXiv preprint arXiv:2201.11793, 2022. 2, 4, 6,…

linux 查看网卡,网络情况

1,使用nload命令查看 #yum -y install nload 2, 查看eth0网卡网络情况 #nload eth0 Incoming也就是进入网卡的流量,Outgoing,也就是从这块网卡出去的流量,每一部分都有下面几个。 – Curr:当前流量 – Avg…

数据库—数据库备份(三十四)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、概述 二、数据备份的重要性 三、造成数据丢失的原因 四、备份类型 4.1物理与逻辑角度 4.2数据库备份策略角度 五、常见的备份方法 5.1 物理备份 5.2 使用专用备…

C#再windowForm窗体中绘画扇形并给其填充颜色

C#再windowForm窗体中绘画扇形并给其填充颜色 Graphics graphics this.CreateGraphics();graphics.SmoothingMode SmoothingMode.AntiAlias;int width this.Width;int height this.Height;h this.Height;w this.Width;Rectangle rct new Rectangle(0 - h / 6, 0 - h / 6…

【Ansible】自动化部署工具-----Ansible

自动化部署工具-Ansible 1.Ansible概述2.ansible环境安装部署2.1 command模块2.2 shell模块2.3 cron模块2.4 user模块2.5 group模块2.6 copy模块2.7 file模块2.8 hostname模块2.9 ping模块2.10 yum模块2.11 service/systemd模块2.12 script模块2.13 mount模块2.14 archive模块2…

PostgreSQL中如何配置Huge page的数量

在了解如在PG中如何配置大页之前,我们先要对大页进行一定的了解,为什么要配置大页,配置大页的好处有哪些。 我们日常的操作系统中,程序不直接使用内存,而是使用虚拟内存地址来处理内存分配,避免计算的复杂…

【Docker】初识Docker以及Docker安装与阿里云镜像配置

目录 一、初识Docker 二、安装Docker 三、Docker架构 四、配置Docker镜像加速器 一、初识Docker Docker是一个开源的应用容器引擎,诞生于2013年,基于Go语言实现,dotCloud公司出品,Docker开源让开发者打包他们的应用以及依赖包到…

使用frp中的xtcp映射穿透指定服务实现不依赖公网ip网速的内网穿透p2p

使用frp中的xtcp映射穿透指定服务实现不依赖公网ip网速的内网穿透p2p 管理员Ubuntu配置公网服务端frps配置service自启(可选) 配置内网服务端frpc配置service自启(可选) 使用者配置service自启(可选) 效果 通过frp实现内网client访问另外一个内网服务器 管理员 1)…

vmware磁盘组使用率100%处理

今天在外办事时,有客户发过来一个截图,问vmware 磁盘组空间使用率100%咋办?如下图: 直接回复: 1、首先删除iso文件等 2、若不存在ISO文件等,找个最不重要的虚拟机直接删除,删除后稍等就会释放…

订单30分钟未支付自动取消怎么实现?

目录 了解需求方案 1:数据库轮询方案 2:JDK 的延迟队列方案 3:时间轮算法方案 4:redis 缓存方案 5:使用消息队列 了解需求 在开发中,往往会遇到一些关于延时任务的需求。最全面的Java面试网站 例如 生…