基于白鲸算法的无人机航迹规划-附代码

基于白鲸算法的无人机航迹规划

文章目录

  • 基于白鲸算法的无人机航迹规划
    • 1.白鲸搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用白鲸算法来优化无人机航迹规划。

1.白鲸搜索算法

白鲸算法原理请参考:https://blog.csdn.net/u011835903/article/details/127642354

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得白鲸搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:
在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用白鲸算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,白鲸算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/133445.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

内核态内存映射

内核态的内存映射机制,主要包含以下几个部分: 内核态内存映射函数 vmalloc、kmap_atomic 是如何工作的;内核态页表是放在哪里的,如何工作的?swapper_pg_dir 是怎么回事;出现了内核态缺页异常应该怎么办&am…

什么是智慧工地?

智慧工地将更多人工智能、传感技术、虚拟现实等高科技技术植入到建筑、机械、人员穿戴设施、场地进出关口等各类物体中,并且被普遍互联,形成“物联网”,再与“互联网”整合在一起,实现工程管理干系人与工程施工现场的整合。智慧工…

火山引擎云原生存储加速实践

在火山引擎相关的业务中绝大部分的机器学习和数据湖的算力都运行在云原生 K8s 平台上。云原生架构下存算分离和弹性伸缩的计算场景,极大的推动了存储加速这个领域的发展,目前业界也衍生出了多种存储加速服务。但是面对计算和客户场景的多样性&#xff0c…

CSS 滚动捕获 Scroll Snap

CSS 滚动捕获 Scroll Snap CSS 滚动捕获允许开发者通过声明一些位置(或叫作捕获位置)来创建精准控制的滚动体验. 通常来说轮播图就是这种体验的例子, 在轮播图中, 用户只能停在图 A 或者图 B, 而不能停在 A 和 B 的中间. 比如平时用淘宝或小红书, 当你上滑到下一个推荐内容时…

wpf Grid布局详解 `Auto` 和 `*` 是两种常见的设置方式 行或列占多个单元格,有点像excel里的合并单元格。使其余的列平均分配剩余的空间

比如只有行的界面 <Window x:Class"GenerateTokenApp.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/exp…

YOLO目标检测——红绿灯检测数据集【含对应voc、coco和yolo三种格式标签】

实际项目应用&#xff1a;红绿灯检测数据集在自动驾驶、交通安全监控、智能交通系统、交通流量监测和驾驶员辅助系统等领域都有广泛应用的潜力数据集说明&#xff1a;红绿灯检测数据集&#xff0c;真实场景的高质量图片数据&#xff0c;数据场景丰富&#xff0c;含有国内红绿灯…

Zeus IoT : 基于 SpringBoot 的分布式开源物联网大数据平台

Zeus IoT 是一个集设备数据采集、存储、分析、观测为一体的开源物联网平台&#xff0c;全球首创基于 Zabbix 的物联网分布式数据采集架构&#xff0c;具备超百万级物联网设备的并发监控能力&#xff0c;真正具备工业级性能与稳定性的开源物联网大数据中台。 Zeus IoT 致力于让设…

快速实现一个企业级域名 SSL 证书有效期监控巡检系统

Why 现在对于企业来说&#xff0c;HTTPS 已经不是可选项&#xff0c;已经成为一个必选项。HTTPS 协议采用 SSL 协议&#xff0c;采用公开密钥的技术&#xff0c;提供了一套 TCP/IP 传输层数据加密的机制。SSL 证书是一种遵守 SSL 协议的服务器数字证书&#xff0c;一般是由权威…

Rust编程基础核心之所有权(下)

1.变量与数据交互方式之二: 克隆 在上一节中, 我们讨论了变量与数据交互的第一种方式: 移动, 本节将介绍第二种方式:克隆。 如果我们 确实 需要深度复制 String 中堆上的数据&#xff0c;而不仅仅是栈上的数据&#xff0c;可以使用一个叫做 clone 的通用函数。 看下面的代码…

Mac苹果电脑分辨率修改管理 安装SwitchResX 完美解决

SwitchResX for Mac是一款Mac应用程序&#xff0c;可帮助您更好地管理和控制显示器分辨率和其他显示设置。使用SwitchResX&#xff0c;您可以创建自定义分辨率、旋转屏幕、调整显示器色彩配置等。 1. 自定义分辨率&#xff1a;SwitchResX允许用户创建自定义的屏幕分辨率&#…

VSCode设置中文语言界面(VScode设置其他语言界面)

一、下载中文插件 二、修改配置 1、使用快捷键 CtrlShiftP 显示出搜索框 2、然后输入 configure display language 3、点击 (中文简体) 需要修改的语言配置 三、重启 四、可能出现的问题 1、如果configure display language已经是中文配置&#xff0c;界面仍是英文 解决&a…

css进阶知识点速览

0前言 零基础部分的博客 1选择器进阶 1.1后代选择器 作用&#xff1a;根据html标签的嵌套关系&#xff0c;选择父元素后代中满足条件的元素 选择器语法&#xff1a;选择器1 选择器2 {css} 结果&#xff1a; 在选择器1所找到标签的后代中 注意&#xff1a; 后代包括&#xf…

python 视频硬字幕去除 内嵌字幕去除工具 vsr

项目简介 开源地址&#xff1a;https://github.com/YaoFANGUK/video-subtitle-remover Video-subtitle-remover (VSR) 是一款基于AI技术&#xff0c;将视频中的硬字幕去除的软件。 主要实现了以下功能&#xff1a; 无损分辨率将视频中的硬字幕去除&#xff0c;生成去除字幕后…

java高级之单元测试、反射

1、Junit测试工具 Test定义测试方法 1.被BeforeClass标记的方法,执行在所有方法之前 2.被AfterCalss标记的方法&#xff0c;执行在所有方法之后 3.被Before标记的方法&#xff0c;执行在每一个Test方法之前 4.被After标记的方法&#xff0c;执行在每一个Test方法之后 public …

取消elementUI中table的选中状态和勾选状态赋值

一、取消所有选中 1、表格上绑定ref 2、清空用户选中数据 this.$refs.loopRef.clearSelection()二、勾选状态赋值 获取数据&#xff0c;flag为true则是选中状态&#xff0c;并将前面勾选框设为选中状态 this.listData.forEach(item> {if(row.flag1){this.$refs.loopRef.to…

JavaEE平台技术——预备知识(Maven、Docker)

JavaEE平台技术——预备知识&#xff08;Maven、Docker&#xff09; 1. Maven2. Docker 在观看这个之前&#xff0c;大家请查阅前序内容。 &#x1f600;JavaEE的渊源 &#x1f600;&#x1f600;JavaEE平台技术——预备知识&#xff08;Web、Sevlet、Tomcat&#xff09; 1. M…

【漏洞复现】typecho_v1.0-14.10.10_unserialize

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 漏洞利用GetShell 下载链接&#xff1a;https://pan.baidu.com/s/1z0w7ret-uXHMuOZpGYDVlw 提取码&#xff1a;lt7a 首页 漏洞点&#xff1a;/install.php?finish 漏洞利用 …

5+单基因泛癌范文式教学,适合小白学习

今天给同学们分享一篇生信文章“Comprehensive Pan-Cancer Analysis of KIF18A as a Marker for Prognosis and Immunity”&#xff0c;这篇文章发表在Biomolecules期刊上&#xff0c;影响因子为5.5。 结果解读&#xff1a; KIF18A的表达及其在泛癌中的诊断价值 TIMER数据库被…

多模态中各种Fusion方式汇总

多模态中各种Fusion骚操作 大噶好&#xff0c;我是DASOU&#xff1b; 今天继续写多模态系列文章&#xff0c;对多模态感兴趣的可以看我之前的文章&#xff1a; 其实对于多模态来说&#xff0c;主要可以从三个部分去掌握它&#xff1a; 如何获取多模态的表示【learning mult…

【ARFoundation学习笔记】ARFoundation基础(下)

写在前面的话 本系列笔记旨在记录作者在学习Unity中的AR开发过程中需要记录的问题和知识点。难免出现纰漏&#xff0c;更多详细内容请阅读原文。 文章目录 TrackablesTrackableManager可跟踪对象事件管理可跟踪对象 Session管理 Trackables 在AR Foundation中&#xff0c;平面…