基于跳蛛算法的无人机航迹规划-附代码

基于跳蛛算法的无人机航迹规划

文章目录

  • 基于跳蛛算法的无人机航迹规划
    • 1.跳蛛搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用跳蛛算法来优化无人机航迹规划。

1.跳蛛搜索算法

跳蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/123832349

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得跳蛛搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用跳蛛算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,跳蛛算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/133005.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react配置二级路由

1.在createBrowserRouter上添加basename属性&#xff0c;比如 const RouterRender createBrowserRouter([{path: /,element: <App><Login></Login></App>},...SystemRouter,...InventoryRouter,...FlowManageRouter,{path: "*",element: &…

Verilog 基础知识(一) Verilog 基础语法与注意事项

基础知识 0.1 模块(Module) Verilog中的module可以看成一个具有输入输出端口的黑盒子&#xff0c;该黑盒子有输入和输出接口(信号)&#xff0c;通过把输入在盒子中执行某些操作来实现某项功能。(类似于C语言中的函数) 图1 模块示意图 0.1.1 模块描述 图1 所示的顶层模块(top…

UNI-APP_获取手机品牌

在uni-app中&#xff0c;使用uni.getSystemInfoSync().brand可以获取设备的品牌信息。根据不同设备的品牌&#xff0c;uni.getSystemInfoSync().brand可能返回以下一些常见值 “Apple” - 苹果 “Samsung” - 三星 “Huawei” - 华为 “Xiaomi” - 小米 “OPPO” - OPPO “Vivo…

PaddleX数据集规范

目录 1、图像分类任务 2、目标检测任务 3、主体检测任务 4、图像分割任务 5、特征检索任务 6、文本检测任务 7、文本识别任务 8、版面分析任务 9、表格识别任务 10、关键信息抽取任务 11、点云3D目标检测任务 12、多目3D目标检测任务 13、单目3D目标检测任务 14、长…

CSS鼠标悬浮变小手

当我们在网页设计中需要用户点击或者选择某个元素时&#xff0c;很多时候会使用鼠标悬浮变小手的效果&#xff0c;这种效果可以让用户更快速的完成操作&#xff0c;提高用户体验。 在CSS中设置鼠标悬浮变小手效果非常简单&#xff0c;只需要使用cursor属性即可。以下是具体步骤…

理德外汇: 美元暴跌创近一个半月新低

10月30日-11月3日市场综述&#xff1a;央行超级周果然名不虚传&#xff01;上周美联储鸽派暂停升息令全球股债疯狂暴拉&#xff0c;加上非农就业数据疲弱&#xff0c;市场对美联储再加息的预期降温&#xff0c;美股创下今年最大单周增幅&#xff0c;美元持续下滑&#xff0c;与…

【Redis】Redis整合SSMRedis中的缓存穿透、雪崩、击穿的原因以及解决方案(详解)

目录&#xff1a; 目录 一&#xff0c;SSM整合redis 二&#xff0c;redis注解式缓存 三&#xff0c;Redis中的缓存穿透、雪崩、击穿的原因以及解决方案&#xff08;附图&#xff09; 一&#xff0c;SSM整合redis 1.原因&#xff1a; 整合SSM和Redis可以提升系统的性能、可…

2023 年如何学习编程

在当今的数字时代&#xff0c;程序员的角色比以往任何时候都更加重要。编程技能几乎在每个行业都受到高度重视和追捧。从科技初创公司到成熟企业&#xff0c;对具有适当技术能力的开发人员的需求巨大。 无论是考虑转行还是开始&#xff0c;现在都是成为一名程序员的激动人心的…

2023世界传感器大会开幕,汉威科技多领域创新产品引瞩目

11月5日&#xff0c;2023世界传感器大会在郑州国际会展中心正式拉开帷幕。据悉&#xff0c;本次大会由河南省人民政府、中国科学技术协会主办&#xff0c;郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。 大会由“一会一赛一展”组成&#…

【Liunx系统编程】命令模式3

目录 一&#xff0c;zip/unzip压缩指令 二&#xff0c;tar打包/压缩/解包指令 三&#xff0c;uname获取系统信息指令 四&#xff0c;Liunx下常用且重要的按键和关机指令 五&#xff0c;文件之间的互传 1&#xff0c;Windows与Linux之间的互传 2&#xff0c;Linux系统之间…

3.22每日一题(二重积分求平面区域面积)

先复习求平面积分的公式 注&#xff1a;面对平面积分直接使用二重积分对1求积分即可&#xff1b;所以只需要背二重积分的两个公式&#xff1a; 1、直角坐标下对1积分 2、极坐标下对1积分 xy-1是等轴双曲线&#xff01;&#xff01; 1、先画图定区域 2、选择先对x积分还是先对…

深入了解Typescript中type和interface具体区别?

前言 新手刚开始学习 TypeScript 时&#xff0c;往往会对 type 和 interface 的使用场景和方式感到困惑。因此&#xff0c;本文旨在总结 type 和 interface 的概念和用法。 一、概念 type&#xff1a;类型别名 概念&#xff1a;允许为一个或多个数据类型&#xff08;例如 str…

android studio app红叉无法编译

1.起源 今天前台小姐姐穿了一个白色的超短裙,和小姐姐聊了聊人生梦想,聊生活趣事,回到工位你马....报了一个这错误,无法运行了,明天就要打包测试了,顿时菊花一紧,急了一头汗,这你马咋回事,看了旁边的产品肥仔,迷着小眼露出了银建的笑容.开始排雷.... 意思就是说gradle初始化失…

WARNING: tokenization mismatch: 403 vs. 406. (ignored) LLaVa

LLaVa换BaiChuan底座报错 WARNING: tokenization mismatch: 403 vs. 406. (ignored) 解决 cd ~/.cache/huggingface/hub/models--baichuan-inc--Baichuan2-7B-Base/snapshots/0cc6a61c06cd0734270151109d07cf86ef0ace53 vim tokenizer_config.json把bos_token改成true&#…

(四) Python 使用Pandas生成日报

一、介绍 Pandas是Python中一个强大的数据处理库&#xff0c;它提供了许多功能强大的数据结构和数据分析工具。在本文中&#xff0c;我们将介绍Pandas的基本概念和如何使用它生成一个包含今天到未来20个工作日的日期列表的Excel文件。 Pandas提供了大量的数据结构和数据分析工…

RK3568平台 内存的基本概念

一.Linux的Page Cache page cache&#xff0c;又称pcache&#xff0c;其中文名称为页高速缓冲存储器&#xff0c;简称页高缓。page cache的大小为一页&#xff0c;通常为4K。在linux读写文件时&#xff0c;它用于缓存文件的逻辑内容&#xff0c;从而加快对磁盘上映像和数据的访…

评估大型语言模型:综述

论文地址&#xff1a;https://arxiv.org/pdf/2310.19736v2.pdf github&#xff1a; tjunlp-lab/awesome-llms-evaluation-… 发表团队&#xff1a;Tianjin University 摘要 将LLM评估划分三点&#xff1a;知识和能力评估、一致性评估和安全性评估。特定领域化评估benchmark评…

在jupyter中使用R

如果想在Jupyter Notebook中使用R语言&#xff0c;以下几个步骤操作可行&#xff1a; 1、启动Anaconda Prompt 2、进入R的安装位置&#xff0c;切换到R的安装位置&#xff1a;D:\Program Files\R\R-3.4.3\bin&#xff0c;启动R&#xff0c;具体代码操作步骤如下&#xff0c;在…

vue的rules验证失效,部分可以部分又失效的原因

vue的rules验证失效,部分可以部分又失效的原因 很多百度都有,但是我这里遇到了一个特别的,那就是prop没有写全,导致验证某一个失效 例子: 正常写法 el-form-item....多个省略<el-form-item label"胶币" prop"cost"><el-input v-model"form.…

1200*D. Same Differences(数学推公式)

Problem - 1520D - Codeforces 解析&#xff1a; 统计 a [ i ] - i #include<bits/stdc.h> using namespace std; #define int long long const int N2e55; int t,n,a[N]; signed main(){scanf("%lld",&t);while(t--){scanf("%lld",&n);…