代码随想录算法训练营第二十五天 | 读PDF复习环节3

读PDF复习环节3

  • 本博客的内容只是做一个大概的记录,整个PDF看下来,内容上是不如代码随想录网站上的文章全面的,并且PDF中有些地方的描述,是很让我疑惑的,在困扰我很久后,无意间发现,其网站上的讲解完全符合我的思路。这次看完这些PDF后,暂时一段时间内不会再看了,要复习还是依靠,代码随想录网站,视频,和我自己写的博客吧
  • 回溯算法章节,这算是我掌握的还行的一个章节了。
    • 组合
    • 组合总和 III
    • 电话号码的字母组合
    • 组合总和
      • 本题,代码随想录的剪枝策略是,排序之后加剪枝,可以,不符合条件直接跳出当层for循环了。
    • 组合总和II
      • 树层去重,used[i-1] = False 。树枝去重,used[i-1] = True .
    • 分割回文串
    • 复原IP地址
    • 子集
      • 求组合,就要用到 idx ,求排列,不需要 idx , 而且本题不需要 used 数组,idx 已经成功控制了。
    • 子集II
    • 递增子序列
      • 本题太具有迷惑性了,一开始还真没注意!本题给的示例都是排好序的,让我误以为可以使用之前的去重逻辑!实则不然,因为求的是递增子序列,这意味着我们不能对数组进行排序操作,所以不能使用之前的去重逻辑。要使用新的,在递归函数中每次都声明的,哈希(集合)去重逻辑,我不喜欢用set,我喜欢用哈希。
      • 代码随想录的代码
    • 全排列
      • 求排列,不需要 idx , 递归中每次都是从0开始遍历,但要用used数组,来表示哪些元素已经被使用过。
    • 全排列 II
      • 小小去重,可笑可笑
      • 但是这道题的去重很有意思,要去看代码随想录的解答。
    • 回溯算法去重问题的另一种写法
      • 可以看看,核心思想是,讲解树层去重和树枝去重。
    • 重新安排行程
      • 再看依旧是不会
    • N皇后
      • 前几天写过了,核心思想就是,皇后一定是一行一行放的,每行放一个,所以可以用一个idx来控制当前是第几行,只要for循环遍历每个列位置就可以了,另外,在判断皇后是否合法时,我们只需要知道每个皇后的位置就可以了,不需要传入整个棋盘,那样太复杂了。
    • 数独
      • 本题的要点在于,就是在每个递归函数中,都使用三层,从0开始遍历的for循环,遍历行,遍历列,遍历数字,利用棋盘中,该位置是否是空,来判断是否在该位置填入数字,这样的编程逻辑是非常自然的。如果是想用idx来控制当前输入到了第几行第几列,那样就太麻烦了!遇到数字就continue,多跑几次什么都不做的for循环是无所谓的!
      • 同样,在上面的编写逻辑下,判断是否合法也是较为容易的,只需要传入当前参数,每层循环的 i j k ,去判断,同行,同列,同小块,是否合法即可。

本博客的内容只是做一个大概的记录,整个PDF看下来,内容上是不如代码随想录网站上的文章全面的,并且PDF中有些地方的描述,是很让我疑惑的,在困扰我很久后,无意间发现,其网站上的讲解完全符合我的思路。这次看完这些PDF后,暂时一段时间内不会再看了,要复习还是依靠,代码随想录网站,视频,和我自己写的博客吧

回溯算法章节,这算是我掌握的还行的一个章节了。

组合

其中使用的剪枝技巧值得学习。
在这里插入图片描述

组合总和 III

class Solution:def combinationSum3(self, k: int, n: int) -> List[List[int]]:self.res = []path = []idx = 1self.backtracking(k,n,idx,path)return self.resdef backtracking(self,k,n,idx,path):if len(path)==k :if n == 0 :self.res.append(path.copy())returnelse :return# 小小剪枝for i in range(idx,10-(k-len(path))+1):# 小小剪枝if n-i < 0 :continueelse :path.append(i)self.backtracking(k,n-i,i+1,path)path.pop()return 

电话号码的字母组合

只要用 idx 来控制当前应该取第几个数字,就只需要一层循环了,而不是之前我习惯的两层循环。

class Solution:def letterCombinations(self, digits: str) -> List[str]:if digits == '' :return []self.dict = {'1' : '', '0' : '' , '#' : '' , '*' : '' ,'2':'abc' , '3':'def' , '4':'ghi' , '5':'jkl', '6':'mno' ,'7':'pqrs','8':'tuv','9':'wxyz'}self.res = []path = []n = len(digits)idx = 0self.backtracking(digits,n,idx,path)return self.resdef backtracking(self,digits,n,idx,path):if len(path) == n :self.res.append(''.join(path))return# 取当前的数字number = digits[idx]ss = self.dict[number]m = len(ss)# 在当前数字对应的字符串中,从0开始遍历for i in range(m):path.append(ss[i])self.backtracking(digits,n,idx+1,path)path.pop()

组合总和

本题需要注意的是,虽然元素可以重复,但是必须要有idx,idx是保证,遍历一直是正序的,不会走回头路。

class Solution:def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:self.res = []path = []n = len(candidates)idx = 0self.backtracking(candidates,n,target,idx,path)return self.resdef backtracking(self,candidates,n,target,idx,path):if target == 0 :self.res.append(path.copy())returnif target < 0 :returnfor i in range(idx,n):if target < candidates[i] :continuepath.append(candidates[i])# 注意这里,传入 idx 的区别,因为元素可以重复,所以是 i , 不是 i+1# 但是也必须要有idx !!! self.backtracking(candidates,n,target-candidates[i],i,path)path.pop()

在这里插入图片描述

本题,代码随想录的剪枝策略是,排序之后加剪枝,可以,不符合条件直接跳出当层for循环了。

class Solution:def backtracking(self, candidates, target, total, startIndex, path, result):if total == target:result.append(path[:])returnfor i in range(startIndex, len(candidates)):if total + candidates[i] > target:breaktotal += candidates[i]path.append(candidates[i])self.backtracking(candidates, target, total, i, path, result)total -= candidates[i]path.pop()def combinationSum(self, candidates, target):result = []candidates.sort()  # 需要排序self.backtracking(candidates, target, 0, 0, [], result)return result

组合总和II

剪枝+used数组去重。

class Solution:def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:candidates.sort()n = len(candidates)self.res = []path = []used = [False]*nidx = 0self.backtracking(candidates,target,n,idx,path,used)return self.resdef backtracking(self,candidates,target,n,idx,path,used):if target == 0 :self.res.append(path.copy())returnif target < 0 :return for i in range(idx,n):if candidates[i] > target :breakif i > 0 and used[i-1] == False and candidates[i]==candidates[i-1]:continuepath.append(candidates[i])used[i] = Trueself.backtracking(candidates,target-candidates[i],n,i+1,path,used)used[i] = Falsepath.pop()

树层去重,used[i-1] = False 。树枝去重,used[i-1] = True .

代码随想录的代码

class Solution:def backtracking(self, candidates, target, total, startIndex, used, path, result):if total == target:result.append(path[:])returnfor i in range(startIndex, len(candidates)):# 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]:continueif total + candidates[i] > target:breaktotal += candidates[i]path.append(candidates[i])used[i] = Trueself.backtracking(candidates, target, total, i + 1, used, path, result)used[i] = Falsetotal -= candidates[i]path.pop()def combinationSum2(self, candidates, target):used = [False] * len(candidates)result = []candidates.sort()self.backtracking(candidates, target, 0, 0, used, [], result)return result

分割回文串

注意分割区间定义即可,左闭右闭。

class Solution:def partition(self, s: str) -> List[List[str]]:self.res = []path = []n = len(s)idx = 0self.backtracking(s,n,idx,path)return self.resdef backtracking(self,s,n,idx,path):if idx >= n :self.res.append(path.copy())return # 这里注意细节就好,i就是要取到n-1# 加入s='aa',s[1:2]='a',索引下标,是不包括最后一个值的for i in range(idx,n):# 注意回文子串区间定义:[idx,i],i为分割线temp = s[idx:i+1]if self.is_right(temp):path.append(temp)self.backtracking(s,n,i+1,path)path.pop()def is_right(self,temp):left = 0right = len(temp)-1while left < right :if temp[left]!=temp[right]:return Falseleft += 1right -= 1 return True

还可以提前使用动态规划的方法,判断出给字符串的所有子串是否是回文串,然后将结果储存起来。核心代码就是,先从下到上遍历,再从左到右遍历,一共需要考虑三种情况,会导致 dp[i][j] 是回文串,dp[i][j] 代表字符串中 [i,j] 的子串,是不是回文串。

class Solution:def partition(self, s: str) -> List[List[str]]:result = []isPalindrome = [[False] * len(s) for _ in range(len(s))]  # 初始化isPalindrome矩阵self.computePalindrome(s, isPalindrome)self.backtracking(s, 0, [], result, isPalindrome)return resultdef backtracking(self, s, startIndex, path, result, isPalindrome):if startIndex >= len(s):result.append(path[:])returnfor i in range(startIndex, len(s)):if isPalindrome[startIndex][i]:   # 是回文子串substring = s[startIndex:i + 1]path.append(substring)self.backtracking(s, i + 1, path, result, isPalindrome)  # 寻找i+1为起始位置的子串path.pop()           # 回溯过程,弹出本次已经添加的子串def computePalindrome(self, s, isPalindrome):for i in range(len(s) - 1, -1, -1):  # 需要倒序计算,保证在i行时,i+1行已经计算好了for j in range(i, len(s)):if j == i:isPalindrome[i][j] = Trueelif j - i == 1:isPalindrome[i][j] = (s[i] == s[j])else:isPalindrome[i][j] = (s[i] == s[j] and isPalindrome[i+1][j-1])

复原IP地址

class Solution:def restoreIpAddresses(self, s: str) -> List[str]:self.res = []path = []idx = 0n = len(s)self.backtacking(s,n,idx,path)return self.resdef backtacking(self,s,n,idx,path):if idx >= n :if len(path)==4:self.res.append('.'.join(path))returnelse :returnif len(path)==3 :temp = s[idx:n]if self.is_right(temp):path.append(temp)self.backtacking(s,n,n,path)path.pop()else :for i in range(idx,n):  temp = s[idx:i+1]if self.is_right(temp):path.append(temp)self.backtacking(s,n,i+1,path)path.pop()def is_right(self,temp):n = len(temp)if temp[0] == '0' and n > 1 :return Falseif int(temp) > 255 or int(temp) < 0 :return Falsereturn True

我觉得我还剪了一下枝,挺好,

代码随想录的代码:

class Solution:def restoreIpAddresses(self, s: str) -> List[str]:results = []self.backtracking(s, 0, [], results)return resultsdef backtracking(self, s, index, path, results):if index == len(s) and len(path) == 4:results.append('.'.join(path))returnif len(path) > 4:  # 剪枝returnfor i in range(index, min(index + 3, len(s))):if self.is_valid(s, index, i):sub = s[index:i+1]path.append(sub)self.backtracking(s, i+1, path, results)path.pop()def is_valid(self, s, start, end):if start > end:return Falseif s[start] == '0' and start != end:  # 0开头的数字不合法return Falsenum = int(s[start:end+1])return 0 <= num <= 255

子集

冗余的代码,本题不需要 used 数组,idx 已经可以控制,不出现重复了。

class Solution:def subsets(self, nums: List[int]) -> List[List[int]]:self.res = []path = []n = len(nums)used = [False]*nidx = 0self.backtracking(nums,n,idx,used,path)return self.resdef backtracking(self,nums,n,idx,used,path):self.res.append(path.copy())# 本题还是要有idxfor i in range(idx,n):if used[i]==False :used[i]=Truepath.append(nums[i])self.backtracking(nums,n,i+1,used,path)path.pop()used[i]=False

在这里插入图片描述

求组合,就要用到 idx ,求排列,不需要 idx , 而且本题不需要 used 数组,idx 已经成功控制了。

代码随想录的代码:

class Solution:def subsets(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):result.append(path[:])  # 收集子集,要放在终止添加的上面,否则会漏掉自己# if startIndex >= len(nums):  # 终止条件可以不加#     returnfor i in range(startIndex, len(nums)):path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

子集II

直接套用之前的去重逻辑。

class Solution:def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:self.res = []path = []nums.sort()n = len(nums)used = [False]*nidx = 0self.backtracking(nums,n,idx,used,path)return self.resdef backtracking(self,nums,n,idx,used,path):self.res.append(path.copy())# 本题还是要有idxfor i in range(idx,n):if i > 0 and used[i-1]==False and nums[i-1]==nums[i]:continueelse:   used[i]=Truepath.append(nums[i])self.backtracking(nums,n,i+1,used,path)path.pop()used[i]=False

递增子序列

本题太具有迷惑性了,一开始还真没注意!本题给的示例都是排好序的,让我误以为可以使用之前的去重逻辑!实则不然,因为求的是递增子序列,这意味着我们不能对数组进行排序操作,所以不能使用之前的去重逻辑。要使用新的,在递归函数中每次都声明的,哈希(集合)去重逻辑,我不喜欢用set,我喜欢用哈希。

class Solution:def findSubsequences(self, nums: List[int]) -> List[List[int]]:self.res = []path = []idx = 0n = len(nums)self.backtracking(nums,n,idx,path)return self.resdef backtracking(self,nums,n,idx,path):if len(path)>=2:self.res.append(path.copy())used = [False]*201for i in range(idx,n):if used[100+nums[i]] == True:continueif path==[] or nums[i] >= path[-1] :path.append(nums[i])used[100+nums[i]] = Trueself.backtracking(nums,n,i+1,path)path.pop()

代码随想录的代码

递增子序列

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集# 注意这里不要加return,要取树上的节点uset = set()  # 使用集合对本层元素进行去重for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or nums[i] in uset:continueuset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()
class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集used = [0] * 201  # 使用数组来进行去重操作,题目说数值范围[-100, 100]for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:continue  # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素used[nums[i] + 100] = 1  # 标记当前元素已经使用过path.append(nums[i])  # 将当前元素加入当前递增子序列self.backtracking(nums, i + 1, path, result)path.pop()

全排列

求排列,不需要 idx , 递归中每次都是从0开始遍历,但要用used数组,来表示哪些元素已经被使用过。

class Solution:def permute(self, nums: List[int]) -> List[List[int]]:self.res = []path = []n = len(nums)used = [False]*nself.backtracking(nums,n,used,path)return self.resdef backtracking(self,nums,n,used,path):if len(path)==n:self.res.append(path.copy())returnfor i in range(n):if used[i]==False :used[i]=Truepath.append(nums[i])self.backtracking(nums,n,used,path)path.pop()used[i]=False

全排列 II

小小去重,可笑可笑

lass Solution:def permuteUnique(self, nums: List[int]) -> List[List[int]]:self.res = []path = []n = len(nums)nums.sort()used = [False]*nself.backtracking(nums,n,used,path)return self.resdef backtracking(self,nums,n,used,path):if len(path)==n:self.res.append(path.copy())returnfor i in range(n):if i > 0 and used[i-1] == False and nums[i-1]==nums[i]:continueif used[i]==False:used[i]=Truepath.append(nums[i])self.backtracking(nums,n,used,path)path.pop()used[i]=False

但是这道题的去重很有意思,要去看代码随想录的解答。

全排列 II

回溯算法去重问题的另一种写法

可以看看,核心思想是,讲解树层去重和树枝去重。

回溯算法去重问题的另一种写法

重新安排行程

再看依旧是不会

重新安排行程

class Solution:def findItinerary(self, tickets: List[List[str]]) -> List[str]:tickets.sort() # 先排序,这样一旦找到第一个可行路径,一定是字母排序最小的used = [0] * len(tickets)path = ['JFK']results = []self.backtracking(tickets, used, path, 'JFK', results)return results[0]def backtracking(self, tickets, used, path, cur, results):if len(path) == len(tickets) + 1:  # 终止条件:路径长度等于机票数量+1results.append(path[:])  # 将当前路径添加到结果列表return Truefor i, ticket in enumerate(tickets):  # 遍历机票列表if ticket[0] == cur and used[i] == 0:  # 找到起始机场为cur且未使用过的机票used[i] = 1  # 标记该机票为已使用path.append(ticket[1])  # 将到达机场添加到路径中state = self.backtracking(tickets, used, path, ticket[1], results)  # 递归搜索path.pop()  # 回溯,移除最后添加的到达机场used[i] = 0  # 标记该机票为未使用if state:return True  # 只要找到一个可行路径就返回,不继续搜索
from collections import defaultdictclass Solution:def findItinerary(self, tickets: List[List[str]]) -> List[str]:targets = defaultdict(list)  # 构建机场字典for ticket in tickets:targets[ticket[0]].append(ticket[1])for airport in targets:targets[airport].sort()  # 对目的地列表进行排序path = ["JFK"]  # 起始机场为"JFK"self.backtracking(targets, path, len(tickets))return pathdef backtracking(self, targets, path, ticketNum):if len(path) == ticketNum + 1:return True  # 找到有效行程airport = path[-1]  # 当前机场destinations = targets[airport]  # 当前机场可以到达的目的地列表for i, dest in enumerate(destinations):targets[airport].pop(i)  # 标记已使用的机票path.append(dest)  # 添加目的地到路径if self.backtracking(targets, path, ticketNum):return True  # 找到有效行程targets[airport].insert(i, dest)  # 回溯,恢复机票path.pop()  # 移除目的地return False  # 没有找到有效行程

N皇后

前几天写过了,核心思想就是,皇后一定是一行一行放的,每行放一个,所以可以用一个idx来控制当前是第几行,只要for循环遍历每个列位置就可以了,另外,在判断皇后是否合法时,我们只需要知道每个皇后的位置就可以了,不需要传入整个棋盘,那样太复杂了。

代码随想录的代码:

class Solution:def solveNQueens(self, n: int) -> List[List[str]]:result = []  # 存储最终结果的二维字符串数组chessboard = ['.' * n for _ in range(n)]  # 初始化棋盘self.backtracking(n, 0, chessboard, result)  # 回溯求解return [[''.join(row) for row in solution] for solution in result]  # 返回结果集def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:if row == n:result.append(chessboard[:])  # 棋盘填满,将当前解加入结果集returnfor col in range(n):if self.isValid(row, col, chessboard):chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:]  # 放置皇后self.backtracking(n, row + 1, chessboard, result)  # 递归到下一行chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:]  # 回溯,撤销当前位置的皇后def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:# 检查列for i in range(row):if chessboard[i][col] == 'Q':return False  # 当前列已经存在皇后,不合法# 检查 45 度角是否有皇后i, j = row - 1, col - 1while i >= 0 and j >= 0:if chessboard[i][j] == 'Q':return False  # 左上方向已经存在皇后,不合法i -= 1j -= 1# 检查 135 度角是否有皇后i, j = row - 1, col + 1while i >= 0 and j < len(chessboard):if chessboard[i][j] == 'Q':return False  # 右上方向已经存在皇后,不合法i -= 1j += 1return True  # 当前位置合法

数独

本题的要点在于,就是在每个递归函数中,都使用三层,从0开始遍历的for循环,遍历行,遍历列,遍历数字,利用棋盘中,该位置是否是空,来判断是否在该位置填入数字,这样的编程逻辑是非常自然的。如果是想用idx来控制当前输入到了第几行第几列,那样就太麻烦了!遇到数字就continue,多跑几次什么都不做的for循环是无所谓的!

同样,在上面的编写逻辑下,判断是否合法也是较为容易的,只需要传入当前参数,每层循环的 i j k ,去判断,同行,同列,同小块,是否合法即可。

代码随想录的代码:

class Solution:def solveSudoku(self, board: List[List[str]]) -> None:"""Do not return anything, modify board in-place instead."""self.backtracking(board)def backtracking(self, board: List[List[str]]) -> bool:# 若有解,返回True;若无解,返回Falsefor i in range(len(board)): # 遍历行for j in range(len(board[0])):  # 遍历列# 若空格内已有数字,跳过if board[i][j] != '.': continuefor k in range(1, 10):if self.is_valid(i, j, k, board):board[i][j] = str(k)if self.backtracking(board): return Trueboard[i][j] = '.'# 若数字1-9都不能成功填入空格,返回False无解return Falsereturn True # 有解def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:# 判断同一行是否冲突for i in range(9):if board[row][i] == str(val):return False# 判断同一列是否冲突for j in range(9):if board[j][col] == str(val):return False# 判断同一九宫格是否有冲突start_row = (row // 3) * 3start_col = (col // 3) * 3for i in range(start_row, start_row + 3):for j in range(start_col, start_col + 3):if board[i][j] == str(val):return Falsereturn True

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海外ASO优化之应用商店本地化

大多数应用可供世界任何地方的用户使用&#xff0c;所以需要以多种不同语言来展示我们的应用。它能够包含在跨地理区域的搜索结果中&#xff0c;从而提高全球可见性和转化率。 1、关键词的研究&#xff0c;对于确定流行的本地关键词至关重要。 在本地化Google Play的应用页面时…

java商城系统和php商城系统有什么差异?如何选择?

java商城系统和php商城系统是两种常见的电子商务平台&#xff0c;它们都具有一定的优势和劣势。那么&#xff0c;java商城系统和php商城系统又有哪些差异呢&#xff1f; 一、开发难度 Java商城系统和PHP商城系统在开发难度方面存在一定的差异。Java商城系统需要使用Java语言进…

Android中绘制的两个天气相关的View

文章目录 一、前言二、降雨的代码三、风向代码 一、前言 开发天气相关软件时候&#xff0c;做了两个自定义View&#xff0c;这里进行记录&#xff0c;由于涉及类较多&#xff0c;这里仅包含核心代码&#xff0c;需要调整后才可以运行&#xff0c;自定义View范围仅包含网格相关…

数学建模学习(5):数学建模各类题型及解题方案

一、数学建模常见的题型 总体来说&#xff0c;数学建模赛题类型主要分为&#xff1a;评价类、预测类和优化类三种&#xff0c;其中优化类是最常见的赛题类 型&#xff0c;几乎每年的地区赛或国赛美赛等均有出题&#xff0c;必须要掌握并且熟悉。 二、评价类赛题 综合评价是数学…

SIP视频对讲sip广播网关

SV-PA2是专门对行业用户需求研发的一款SIP音视频对讲&#xff0c;媒体流传输采用标准IP/RTP/RTSP协议。它很好的继承了锐科达话机稳定性好、电信级音质的优点&#xff0c;且完美兼容当下所有基于SIP的主流IPPBX/软交换/IMS平台,如Asterisk, Broadsoft, 3CX, Elastix 等。它集多…

低代码开发重要工具:jvs-flow(流程引擎)审批功能配置说明

流程引擎场景介绍 流程引擎基于一组节点与执行界面&#xff0c;通过人机交互的形式自动地执行和协调各个任务和活动。它可以实现任务的分配、协作、路由和跟踪。通过流程引擎&#xff0c;组织能够实现业务流程的优化、标准化和自动化&#xff0c;提高工作效率和质量。 在企业…

【C++】类和对象(中篇)

类和对象 类的六大默认成员函数一、构造函数1. 构造函数的概念2. 构造函数的特性 二、析构函数1. 析构函数的概念2. 析构函数的特性 三、拷贝构造函数1. 拷贝构造函数的概念2. 拷贝构造函数的特征 四、赋值运算符重载1. 运算符重载2. 赋值运算符重载 五、取地址及 const 取地址…

图神经网络(GNN)入门学习笔记(直观且简单)

文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客&#xff1a; A Gentle Introduction to Graph Neural Network…

LeetCode 2050. Parallel Courses III【记忆化搜索,动态规划,拓扑排序】困难

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

多线程之GCD应用

一些套话 GCD全称是Grand Central Dispatch&#xff0c;它是纯 C 语言&#xff0c;并且提供了非常多强大的函数 GCD的优势&#xff1a; GCD 是苹果公司为多核的并行运算提出的解决方案GCD 会自动利用更多的CPU内核&#xff08;比如双核、四核&#xff09;GCD 会自动管理线程的…

SpringBoot+Prometheus+Grafana实现系统可视化监控

场景 SpringBoot中集成Actuator实现监控系统运行状态&#xff1a; SpringBoot中集成Actuator实现监控系统运行状态_springboot actuator 获取系统运行时长_霸道流氓气质的博客-CSDN博客 基于以上Actuator实现系统监控&#xff0c;还可采用如下方案。 Prometheus Prometheu…

Selenium基础篇之屏幕截图方法

文章目录 前言一、用途1.捕获页面错误2.调试测试用例3.展示测试结果4.记录页面状态 二、方法1. save_screenshot2. get_screenshot_as_file3. get_screenshot_as_png4. get_screenshot_as_base64 总结 前言 大家好&#xff0c;我是空空star&#xff0c;本篇给大家分享一下Selen…

CMU 15-445 -- Logging Schemes - 17

CMU 15-445 -- Logging Schemes - 17 引言IndexFailure ClassificationTransaction FailuresSystem FailuresStorage Media Failures Buffer Pool PoliciesShadow Paging: No-Steal ForceWrite-Ahead Log (WAL): Steal No-ForceLogging SchemesCheckpoints小结 引言 本系列为…

IDEA配置远程docker解释器及无编码提示/关联不到python依赖问题

文章目录 1. 修改docker默认配置以支持远程连接2. 配置docker远程解释器3 .IDE配置project SDK4. 本地代码与Linux目录映射5.运行配置 1. 修改docker默认配置以支持远程连接 vim /lib/systemd/system/docker.service,修改docker启动参数 #ExecStart/usr/bin/dockerd -H fd://…

c++学习(c++11)[24]

c11 列表初始化 #include"iostream" using namepace std;int main() {int x1 1;int x2 { 2 };int x3 { 2 };vector<int> v1 {1,2,3,4,5,6};vector<int> v1 {1,2,3,4,5,6};list<int> lt1 {1,2,3,4,5,6};list<int> lt1 {1,2,3,4,5,6};au…

Python(四十九)获取列表指定元素的索引

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

汇编调用C语言定义的全局变量

在threadx移植中&#xff0c;系统的systick通过了宏定义的方式定义&#xff0c;很难对接库函数的时钟频率&#xff0c;不太利于进行维护 所以在C文件中自己定义了一个systick_Div的变量&#xff0c;通过宏定义方式设定systick的时钟频率 在汇编下要加载这个systick分频系数 …

UDS诊断协议

UDS本质上是一系列服务的集合&#xff0c;包含6大类&#xff0c;共26种。每种服务都有独立的ID&#xff0c;即SID。 请求 SID(1Byte) 参数 SID(1Byte) Sub-function(1Byte) 参数 SID DID(2Bytes) 响应 肯定响应 SID0x40(1Byte) Sub-function(根据请求是否存在) 参数…

Windows数据类型LPSTR学习

Windows在C语言的基础之上又定义了一些Windows下的数据类型&#xff1b;下面学习一下LPSTR&#xff1b; LPSTR和LPWSTR是Win32和VC所使用的一种字符串数据类型。LPSTR被定义成是一个指向以NULL(‘\0’)结尾的32位ANSI字符数组指针&#xff0c;而LPWSTR是一个指向以NULL结尾的64…

2023年基准Kubernetes报告:6个K8s可靠性失误

云计算日益成为组织构建应用程序和服务的首选目的地。尽管一年来经济不确定性的头条新闻主要集中在通货膨胀增长和银行动荡方面&#xff0c;但大多数组织预计今年的云使用和支出将与计划的相同&#xff08;45%&#xff09;&#xff0c;或高于计划的&#xff08;45%&#xff09;…