数学建模学习(5):数学建模各类题型及解题方案

一、数学建模常见的题型

总体来说,数学建模赛题类型主要分为:评价类、预测类和优化类三种,其中优化类是最常见的赛题类 型,几乎每年的地区赛或国赛美赛等均有出题,必须要掌握并且熟悉。

二、评价类赛题

    综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质的综合评、2010年上海世博会影响力的定量评估问题、2014年美赛“最好大学教练“问题、2015年的“互联网+”时代的出租车资源配等都属于综合评价类问题。

    综合评价是数学建模中的一类常见的问题,在国赛和美赛中都经常出现,例如国赛05年长江水质的综合评、2010年上海世博会影响力的定量评估问题、2014年美赛“最好大学教练“问题、2015年的“互联网+”时代的出租车资源配等都属于综合评价类问题。

2.主客观评价问题的区别

●主客观概念主要是在指标定权时来划分的。主观评价与客观评价的区别是,主观评价算法在定权时主要以判断者的主观经验为依据,而客观评价则主要基于测量数据的基本特性来综合定权

●定权带有一定的主观性,用不同方法确定的权重分配,可能不尽一致,这将导致权重分配的不确定性,最终可能导致评价结果的不确定性。因而在实际工作中,不论用哪种方法确定权重分配,都应当依赖于较为合理的专业解释。

3.如何选择合适的评价方法

●在评价类问题的分析中,如何选择合适的评价方法是决定评价结果好坏的关键因素,因此需要洞悉各常用评价方法的基本特性和使用条件才能顺利答题!

三、预测类赛题

1 预测类赛题的基本解题步骤

●预测就是根据过去和现在,估计未来预测未来。统计预测属于预测方法研究范畴,即如何利用科学的统计方法对事物的未来发展进行定量推测

●基于数学建模的预测方法种类繁多,从经典的单耗法、弹性系数法、统计分析法,到目前的灰色预测法。当在使用相应的预测方法建立预测模型时,我们需要知道主要的一些预测方法的研究特点,优缺点和适用范围

2 预测类问题的区别

●预测类问题分为两类:

●一类是无法用数学语言刻画其内部演化机理的问题;

●另一类是可以通过微分方程刻画其内部规律,这类问题我们称为机理建模问题,通过微分方程建模求解。

3 如何选择合适的预测方法

●在预测类问题的分析中,同样受到预测条件的限制(如数据量的大小、变量之间的关系等)不同的预测方法可能会产生不同的结果,因此需要根据实际情况来选择。

 三、优化类问题

1 优化类赛题的基本解题步骤

●优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。

●优化类问题一般的解题步骤为:

●(1)首先确定决策变量,也就是需要优化的变量;

●(2)然后确定目标函数,也就是优化的目的;

●(3)最后确定约束条件,决策变量在达到最优状态时,受到那些客观限制。

2 部分国赛优化类赛题的解决方案

●在08年国赛眼科病床的合理安排问题中,

●目标函数为医院病床的利用率最高;

·决策变量为服务策略:是先到病人先住院、急诊病人先住院还是占用病床时间短的病人先住院等;

●约束条件可能包括病人最长等待时间限制、不同症状之间的病人不同房等;

●在10年国赛交巡警服务平台的设置与调度问题中,

●决策变量为服务平台的位置坐标;

●目标函数为交巡警车到达事发地时间最短、交巡警封锁交通要道时间最短;

●约束条件可能包括事故发生后交警最晚到达时间,一定区域内服务平台最低数量要求等。

3 如何选择合适的优化方法

●优化类问题中常用的数学模型和求解算法,其中包括线性规划、非线性规划、整数规划、多目标规划等在模型求解中,对于凸优化模型,可以采用基于梯度的求解算法;对于非凸的优化模型,可以采用智能优化算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12618.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SIP视频对讲sip广播网关

SV-PA2是专门对行业用户需求研发的一款SIP音视频对讲,媒体流传输采用标准IP/RTP/RTSP协议。它很好的继承了锐科达话机稳定性好、电信级音质的优点,且完美兼容当下所有基于SIP的主流IPPBX/软交换/IMS平台,如Asterisk, Broadsoft, 3CX, Elastix 等。它集多…

低代码开发重要工具:jvs-flow(流程引擎)审批功能配置说明

流程引擎场景介绍 流程引擎基于一组节点与执行界面,通过人机交互的形式自动地执行和协调各个任务和活动。它可以实现任务的分配、协作、路由和跟踪。通过流程引擎,组织能够实现业务流程的优化、标准化和自动化,提高工作效率和质量。 在企业…

【C++】类和对象(中篇)

类和对象 类的六大默认成员函数一、构造函数1. 构造函数的概念2. 构造函数的特性 二、析构函数1. 析构函数的概念2. 析构函数的特性 三、拷贝构造函数1. 拷贝构造函数的概念2. 拷贝构造函数的特征 四、赋值运算符重载1. 运算符重载2. 赋值运算符重载 五、取地址及 const 取地址…

图神经网络(GNN)入门学习笔记(直观且简单)

文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Network…

LeetCode 2050. Parallel Courses III【记忆化搜索,动态规划,拓扑排序】困难

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

多线程之GCD应用

一些套话 GCD全称是Grand Central Dispatch,它是纯 C 语言,并且提供了非常多强大的函数 GCD的优势: GCD 是苹果公司为多核的并行运算提出的解决方案GCD 会自动利用更多的CPU内核(比如双核、四核)GCD 会自动管理线程的…

SpringBoot+Prometheus+Grafana实现系统可视化监控

场景 SpringBoot中集成Actuator实现监控系统运行状态: SpringBoot中集成Actuator实现监控系统运行状态_springboot actuator 获取系统运行时长_霸道流氓气质的博客-CSDN博客 基于以上Actuator实现系统监控,还可采用如下方案。 Prometheus Prometheu…

Selenium基础篇之屏幕截图方法

文章目录 前言一、用途1.捕获页面错误2.调试测试用例3.展示测试结果4.记录页面状态 二、方法1. save_screenshot2. get_screenshot_as_file3. get_screenshot_as_png4. get_screenshot_as_base64 总结 前言 大家好,我是空空star,本篇给大家分享一下Selen…

CMU 15-445 -- Logging Schemes - 17

CMU 15-445 -- Logging Schemes - 17 引言IndexFailure ClassificationTransaction FailuresSystem FailuresStorage Media Failures Buffer Pool PoliciesShadow Paging: No-Steal ForceWrite-Ahead Log (WAL): Steal No-ForceLogging SchemesCheckpoints小结 引言 本系列为…

IDEA配置远程docker解释器及无编码提示/关联不到python依赖问题

文章目录 1. 修改docker默认配置以支持远程连接2. 配置docker远程解释器3 .IDE配置project SDK4. 本地代码与Linux目录映射5.运行配置 1. 修改docker默认配置以支持远程连接 vim /lib/systemd/system/docker.service,修改docker启动参数 #ExecStart/usr/bin/dockerd -H fd://…

c++学习(c++11)[24]

c11 列表初始化 #include"iostream" using namepace std;int main() {int x1 1;int x2 { 2 };int x3 { 2 };vector<int> v1 {1,2,3,4,5,6};vector<int> v1 {1,2,3,4,5,6};list<int> lt1 {1,2,3,4,5,6};list<int> lt1 {1,2,3,4,5,6};au…

Python(四十九)获取列表指定元素的索引

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

汇编调用C语言定义的全局变量

在threadx移植中&#xff0c;系统的systick通过了宏定义的方式定义&#xff0c;很难对接库函数的时钟频率&#xff0c;不太利于进行维护 所以在C文件中自己定义了一个systick_Div的变量&#xff0c;通过宏定义方式设定systick的时钟频率 在汇编下要加载这个systick分频系数 …

UDS诊断协议

UDS本质上是一系列服务的集合&#xff0c;包含6大类&#xff0c;共26种。每种服务都有独立的ID&#xff0c;即SID。 请求 SID(1Byte) 参数 SID(1Byte) Sub-function(1Byte) 参数 SID DID(2Bytes) 响应 肯定响应 SID0x40(1Byte) Sub-function(根据请求是否存在) 参数…

Windows数据类型LPSTR学习

Windows在C语言的基础之上又定义了一些Windows下的数据类型&#xff1b;下面学习一下LPSTR&#xff1b; LPSTR和LPWSTR是Win32和VC所使用的一种字符串数据类型。LPSTR被定义成是一个指向以NULL(‘\0’)结尾的32位ANSI字符数组指针&#xff0c;而LPWSTR是一个指向以NULL结尾的64…

2023年基准Kubernetes报告:6个K8s可靠性失误

云计算日益成为组织构建应用程序和服务的首选目的地。尽管一年来经济不确定性的头条新闻主要集中在通货膨胀增长和银行动荡方面&#xff0c;但大多数组织预计今年的云使用和支出将与计划的相同&#xff08;45%&#xff09;&#xff0c;或高于计划的&#xff08;45%&#xff09;…

大数据Flink(五十三):Flink流处理特性、发展历史以及Flink的优势

文章目录 Flink流处理特性、发展历史以及Flink的优势 一、Flink流处理特性 二、发展历史

opencv-28 自适应阈值处理-cv2.adaptiveThreshold()

什么是自适应阈值处理? 对于色彩均衡的图像&#xff0c;直接使用一个阈值就能完成对图像的阈值化处理。但是&#xff0c;有时图像的色彩是不均衡的&#xff0c;此时如果只使用一个阈值&#xff0c;就无法得到清晰有效的阈值分割结果图像。 有一种改进的阈值处理技术&#xff…

五、控制流(2)

本章概要 returnbreak 和 continue臭名昭著的 gotoswitchswitch 字符串 return 在 Java 中有几个关键字代表无条件分支&#xff0c;这意味无需任何测试即可发生。这些关键字包括 return&#xff0c;break&#xff0c;continue 和跳转到带标签语句的方法&#xff0c;类似于其…

不管如何吐槽,购买iPhone的用户依然义无反顾,苹果继续增长

市调机构IDC公布的二季度数据显示&#xff0c;苹果成为前五名之中除华为之外第二家取得增长的手机品牌&#xff0c;而其他国产手机品牌的出货量都在下滑&#xff0c;显示出国内的消费者仍然在热烈追捧iPhone。 二季度苹果在国内市场的手机出货量同比增长6%&#xff0c;虽然增速…