seccomp学习 (1)

文章目录

  • 0x01. seccomp规则添加原理
    • A. 默认规则
    • B. 自定义规则
  • 0x02. seccomp沙箱“指令”格式
    • 实例
      • Task 01
      • Task 02
  • 0x03. 总结

今天打了ACTF-2023,惊呼已经不认识seccomp了,在被一道盲打题折磨了一整天之后,实在是不想面向题目高强度学习了。但是seccomp这个东西必然是要系统性的重学一遍了,绝不能把知识面仅限于orw。

学习目标:了解seccomp的保护原理,掌握常用的seccomp绕过姿势,学会手写seccomp BPF指令等。

0x01. seccomp规则添加原理

说到seccomp,都知道它是用来限制进程的系统调用的,但是对于Linux系统而言,有这么多的进程,seccomp又是如何精准拦截定义了规则的进程中调用的非法的系统调用呢?

这就又不得不进入一个令人不适的环节了——Linux源代码阅读。

在目前使用的Linux系统中,有两个系统调用与seccomp有关,一个是prctl,另一个是seccomp,系统调用号分别为157和317,对应的内核函数为sys_prctlsys_seccomp

SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,void __user *, uargs)
{return do_seccomp(op, flags, uargs);
}
SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,unsigned long, arg4, unsigned long, arg5)
{...switch (option) {...case PR_GET_SECCOMP:error = prctl_get_seccomp();break;case PR_SET_SECCOMP:error = prctl_set_seccomp(arg2, (char __user *)arg3);break;...}...
}long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
{unsigned int op;void __user *uargs;switch (seccomp_mode) {case SECCOMP_MODE_STRICT:op = SECCOMP_SET_MODE_STRICT;/** Setting strict mode through prctl always ignored filter,* so make sure it is always NULL here to pass the internal* check in do_seccomp().*/uargs = NULL;break;case SECCOMP_MODE_FILTER:op = SECCOMP_SET_MODE_FILTER;uargs = filter;break;default:return -EINVAL;}/* prctl interface doesn't have flags, so they are always zero. */return do_seccomp(op, 0, uargs);
}

可以看到,如果将prctl系统调用的第一个参数设置为PR_SET_SECCOMP,最终调用的与sys_seccomp相同,都是do_seccomp。这也是设置seccomp规则的入口函数。

/* Common entry point for both prctl and syscall. */
static long do_seccomp(unsigned int op, unsigned int flags,void __user *uargs)
{switch (op) {case SECCOMP_SET_MODE_STRICT:if (flags != 0 || uargs != NULL)return -EINVAL;return seccomp_set_mode_strict();case SECCOMP_SET_MODE_FILTER:return seccomp_set_mode_filter(flags, uargs);case SECCOMP_GET_ACTION_AVAIL:if (flags != 0)return -EINVAL;return seccomp_get_action_avail(uargs);case SECCOMP_GET_NOTIF_SIZES:if (flags != 0)return -EINVAL;return seccomp_get_notif_sizes(uargs);default:return -EINVAL;}
}

上面就是do_seccomp函数的定义。我们要重点关注的是前面两个switch分支,一个是SECCOMP_SET_MODE_STRICT

A. 默认规则

添加默认规则的逻辑在seccomp_set_mode_strict中实现:

static long seccomp_set_mode_strict(void)
{const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;long ret = -EINVAL;spin_lock_irq(&current->sighand->siglock);if (!seccomp_may_assign_mode(seccomp_mode))goto out;#ifdef TIF_NOTSCdisable_TSC();
#endifseccomp_assign_mode(current, seccomp_mode, 0);ret = 0;out:spin_unlock_irq(&current->sighand->siglock);return ret;
}static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
{assert_spin_locked(&current->sighand->siglock);if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)return false;return true;
}#define SECCOMP_MODE_STRICT 0
#define SECCOMP_MODE_FILTER 1

函数中的current是一个task_struct实例,表示当前内核进程。在加锁之后,调用了一个seccomp_may_assign_mode函数用于判断。从这个判断函数可以发现,当我们使用BPF定义规则(此时mode为SECCOMP_MODE_FILTER)时,就不能再切换成严格模式了,否则该函数返回false,直接跳过了规则修改流程。

随后进入主要的规则添加逻辑seccomp_assign_mode函数:

static inline void seccomp_assign_mode(struct task_struct *task,unsigned long seccomp_mode,unsigned long flags)
{assert_spin_locked(&task->sighand->siglock);task->seccomp.mode = seccomp_mode;/** Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and* filter) is set.*/smp_mb__before_atomic();/* Assume default seccomp processes want spec flaw mitigation. */if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)arch_seccomp_spec_mitigate(task);set_task_syscall_work(task, SECCOMP);
}/* Valid flags for SECCOMP_SET_MODE_FILTER */
#define SECCOMP_FILTER_FLAG_TSYNC		(1UL << 0)
#define SECCOMP_FILTER_FLAG_LOG			(1UL << 1)
#define SECCOMP_FILTER_FLAG_SPEC_ALLOW		(1UL << 2)
#define SECCOMP_FILTER_FLAG_NEW_LISTENER	(1UL << 3)
#define SECCOMP_FILTER_FLAG_TSYNC_ESRCH		(1UL << 4)
/* Received notifications wait in killable state (only respond to fatal signals) */
#define SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV	(1UL << 5)#define set_task_syscall_work(t, fl) \set_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work)enum syscall_work_bit {SYSCALL_WORK_BIT_SECCOMP,SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT,SYSCALL_WORK_BIT_SYSCALL_TRACE,SYSCALL_WORK_BIT_SYSCALL_EMU,SYSCALL_WORK_BIT_SYSCALL_AUDIT,SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH,SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP,
};

在这个函数之中,设置了当前进程的mode,随后出现了一个判断,判断成功时执行arch_seccomp_spec_mitigate函数。这个函数的内部逻辑比较复杂,先略过。最后调用set_task_syscall_work,这是一个宏定义,定义如上所示,就是设置一个位,表示这个线程已经开启了seccomp检查。

B. 自定义规则

对于自定义规则而言,添加的过程要复杂许多。

static long seccomp_set_mode_filter(unsigned int flags,const char __user *filter)
{const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;struct seccomp_filter *prepared = NULL;long ret = -EINVAL;int listener = -1;struct file *listener_f = NULL;/* Validate flags. */if (flags & ~SECCOMP_FILTER_FLAG_MASK)return -EINVAL;/** In the successful case, NEW_LISTENER returns the new listener fd.* But in the failure case, TSYNC returns the thread that died. If you* combine these two flags, there's no way to tell whether something* succeeded or failed. So, let's disallow this combination if the user* has not explicitly requested no errors from TSYNC.*/if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&(flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))return -EINVAL;/** The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense* without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag.*/if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) &&((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0))return -EINVAL;/* Prepare the new filter before holding any locks. */prepared = seccomp_prepare_user_filter(filter);if (IS_ERR(prepared))return PTR_ERR(prepared);if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {listener = get_unused_fd_flags(O_CLOEXEC);if (listener < 0) {ret = listener;goto out_free;}listener_f = init_listener(prepared);if (IS_ERR(listener_f)) {put_unused_fd(listener);ret = PTR_ERR(listener_f);goto out_free;}}/** Make sure we cannot change seccomp or nnp state via TSYNC* while another thread is in the middle of calling exec.*/if (flags & SECCOMP_FILTER_FLAG_TSYNC &&mutex_lock_killable(&current->signal->cred_guard_mutex))goto out_put_fd;spin_lock_irq(&current->sighand->siglock);if (!seccomp_may_assign_mode(seccomp_mode))goto out;if (has_duplicate_listener(prepared)) {ret = -EBUSY;goto out;}ret = seccomp_attach_filter(flags, prepared);if (ret)goto out;/* Do not free the successfully attached filter. */prepared = NULL;seccomp_assign_mode(current, seccomp_mode, flags);
out:spin_unlock_irq(&current->sighand->siglock);if (flags & SECCOMP_FILTER_FLAG_TSYNC)mutex_unlock(&current->signal->cred_guard_mutex);
out_put_fd:if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {if (ret) {listener_f->private_data = NULL;fput(listener_f);put_unused_fd(listener);seccomp_notify_detach(prepared);} else {fd_install(listener, listener_f);ret = listener;}}
out_free:seccomp_filter_free(prepared);return ret;
}

函数中有很多的判断条件,当这些判断条件不满足时,会直接返回一个错误值。需要注意的是flags & ~SECCOMP_FILTER_FLAG_MASK = 0,也就是flags除了最低6位其他位必须全为0。

通过3个判断之后,调用了seccomp_prepare_user_filter函数初始化struct seccomp_filter结构体实例。

struct seccomp_filter {refcount_t refs;refcount_t users;bool log;bool wait_killable_recv;struct action_cache cache;struct seccomp_filter *prev;struct bpf_prog *prog;struct notification *notif;struct mutex notify_lock;wait_queue_head_t wqh;
};static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user *user_filter)
{struct sock_fprog fprog;struct seccomp_filter *filter = ERR_PTR(-EFAULT);#ifdef CONFIG_COMPATif (in_compat_syscall()) {struct compat_sock_fprog fprog32;if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))goto out;fprog.len = fprog32.len;fprog.filter = compat_ptr(fprog32.filter);} else /* falls through to the if below. */
#endifif (copy_from_user(&fprog, user_filter, sizeof(fprog)))goto out;filter = seccomp_prepare_filter(&fprog);
out:return filter;
}struct sock_fprog {	/* Required for SO_ATTACH_FILTER. */unsigned short		len;	/* Number of filter blocks */struct sock_filter __user *filter;
};struct sock_filter {	/* Filter block */__u16	code;   /* Actual filter code */__u8	jt;	/* Jump true */__u8	jf;	/* Jump false */__u32	k;      /* Generic multiuse field */
};

从上面的结构体定义和函数定义可以看出,我们传入的用户态指针需要是sock_fprog结构体实例,Linux中定义了一个seccomp规则的最大长度为4096,即len必须位于(0,4096],上面的sock_filter可以理解为seccomp沙箱的一条“指令”。在seccomp_prepare_user_filter中也有一些检查,通过返回值我们就可以知道是针对什么的检查,后面两个是EACCESENOMEM,一个是权限相关,一个是内存不够,一般都不会发生。随后就是将用户传递的过滤器中的内容保存到seccomp_filter实例中返回。

初始化seccomp_filter完成后,我们先略过后面对一些flags的特殊处理,判断了一下是否能够加载规则,随后调用了seccomp_attach_filter,主要是处理已有的flags,随后将新的filter规则添加到头部的位置,使用prev属性连接成一个单链表,如下所示。

static long seccomp_attach_filter(unsigned int flags,struct seccomp_filter *filter)
{unsigned long total_insns;struct seccomp_filter *walker;assert_spin_locked(&current->sighand->siglock);/* Validate resulting filter length. */total_insns = filter->prog->len;for (walker = current->seccomp.filter; walker; walker = walker->prev)total_insns += walker->prog->len + 4;  /* 4 instr penalty */if (total_insns > MAX_INSNS_PER_PATH)return -ENOMEM;.../** If there is an existing filter, make it the prev and don't drop its* task reference.*/filter->prev = current->seccomp.filter;seccomp_cache_prepare(filter);current->seccomp.filter = filter;atomic_inc(&current->seccomp.filter_count);/* Now that the new filter is in place, synchronize to all threads. */if (flags & SECCOMP_FILTER_FLAG_TSYNC)seccomp_sync_threads(flags);return 0;
}

以上就是过滤器添加的大致流程。

0x02. seccomp沙箱“指令”格式

seccomp沙箱的每一条指令的长度都是8字节,分为4个字段——code、jt、jf、k。

struct sock_filter {	/* Filter block */__u16	code;   /* Actual filter code */__u8	jt;	/* Jump true */__u8	jf;	/* Jump false */__u32	k;      /* Generic multiuse field */
};

在Linux中定义了一些方便编写seccomp code的宏定义(code含义定义在 /include/uapi/linux/bpf_common.h 中),这里引用资料中的注释便于理解:

#ifndef BPF_STMT
#define BPF_STMT(code, k) { (unsigned short)(code), 0, 0, k }
#endif
#ifndef BPF_JUMP
#define BPF_JUMP(code, k, jt, jf) { (unsigned short)(code), jt, jf, k }
#endif/* Instruction classes */                    
#define BPF_CLASS(code) ((code) & 0x07)    //指定操作的类别
#define        BPF_LD        0x00               //将值复制到累加器中
#define        BPF_LDX        0x01               //将值加载到索引寄存器中
#define        BPF_ST        0x02               //将累加器中的值存到暂存器
#define        BPF_STX        0x03               //将索引寄存器的值存储在暂存器中
#define        BPF_ALU        0x04               //用索引寄存器或常数作为操作数在累加器上执行算数或逻辑运算
#define        BPF_JMP        0x05               //跳转
#define        BPF_RET        0x06               //返回
#define        BPF_MISC        0x07           // 其他类别/* ld/ldx fields */
#define BPF_SIZE(code)  ((code) & 0x18)
#define        BPF_W        0x00 /* 32-bit */       //字
#define        BPF_H        0x08 /* 16-bit */       //半字
#define        BPF_B        0x10 /*  8-bit */       //字节
/* eBPF        BPF_DW        0x18    64-bit */       //双字
#define BPF_MODE(code)  ((code) & 0xe0)
#define        BPF_IMM        0x00                  //常数 
#define        BPF_ABS        0x20                  //固定偏移量的数据包数据(绝对偏移)
#define        BPF_IND        0x40                  //可变偏移量的数据包数据(相对偏移)
#define        BPF_MEM        0x60                  //暂存器中的一个字
#define        BPF_LEN        0x80                  //数据包长度
#define        BPF_MSH        0xa0/* alu/jmp fields */
#define BPF_OP(code)    ((code) & 0xf0)       //当操作码类型为ALU时,指定具体运算符   
#define        BPF_ADD        0x00        
#define        BPF_SUB        0x10
#define        BPF_MUL        0x20
#define        BPF_DIV        0x30
#define        BPF_OR        0x40
#define        BPF_AND        0x50
#define        BPF_LSH        0x60
#define        BPF_RSH        0x70
#define        BPF_NEG        0x80
#define        BPF_MOD        0x90
#define        BPF_XOR        0xa0//当操作码是jmp时指定跳转类型
#define        BPF_JA        0x00
#define        BPF_JEQ        0x10
#define        BPF_JGT        0x20
#define        BPF_JGE        0x30
#define        BPF_JSET        0x40
#define BPF_SRC(code)   ((code) & 0x08)
#define        BPF_K        0x00                    //常数
#define        BPF_X        0x08                    //索引寄存器

在笔者查资料的时候,发现这个BPF不仅能用来编写seccomp规则,它更像是一个较为成熟的汇编语言+胶水语言,并在2014年就拥有了自己的执行引擎eBPF。这又是一个完全的知识体系。

网络上针对BPF大多是通过C等进行编译获得BPF代码,但对于seccomp而言,我们要做的是直接编写BPF code。但专用于seccomp的BPF除了通用的BPF语法之外,还有一些额外的定义:

/** All BPF programs must return a 32-bit value.* The bottom 16-bits are for optional return data.* The upper 16-bits are ordered from least permissive values to most,* as a signed value (so 0x8000000 is negative).** The ordering ensures that a min_t() over composed return values always* selects the least permissive choice.*/
#define SECCOMP_RET_KILL_PROCESS 0x80000000U /* kill the process */
#define SECCOMP_RET_KILL_THREAD	 0x00000000U /* kill the thread */
#define SECCOMP_RET_KILL	 SECCOMP_RET_KILL_THREAD
#define SECCOMP_RET_TRAP	 0x00030000U /* disallow and force a SIGSYS */
#define SECCOMP_RET_ERRNO	 0x00050000U /* returns an errno */
#define SECCOMP_RET_USER_NOTIF	 0x7fc00000U /* notifies userspace */
#define SECCOMP_RET_TRACE	 0x7ff00000U /* pass to a tracer or disallow */
#define SECCOMP_RET_LOG		 0x7ffc0000U /* allow after logging */
#define SECCOMP_RET_ALLOW	 0x7fff0000U /* allow *//* Masks for the return value sections. */
#define SECCOMP_RET_ACTION_FULL	0xffff0000U
#define SECCOMP_RET_ACTION	0x7fff0000U
#define SECCOMP_RET_DATA	0x0000ffffU

上面定义了seccomp BPF的返回值,从注释可知,返回值的低16bit用于传递其他数据,高16bit用于传递返回值的优先级。当一个系统调用匹配了多个seccomp规则时,会优先使用优先级高的返回值,这里从SECCOMP_RET_KILL_PROCESS的优先级最高,SECCOMP_RET_ALLOW最低,如果一个系统调用匹配了两个规则,返回值分别为SECCOMP_RET_KILLSECCOMP_RET_ALLOW,那么最终将会选择SECCOMP_RET_KILL作为返回值,即杀死触发这个系统调用的线程。

/*** struct seccomp_data - the format the BPF program executes over.* @nr: the system call number* @arch: indicates system call convention as an AUDIT_ARCH_* value*        as defined in <linux/audit.h>.* @instruction_pointer: at the time of the system call.* @args: up to 6 system call arguments always stored as 64-bit values*        regardless of the architecture.*/
struct seccomp_data {int nr;__u32 arch;__u64 instruction_pointer;__u64 args[6];
};

上面这段代码定义了一些编写seccomp BPF code可能会用到的东西,根据注释可知,我们可以在BPF code中获取该系统调用的:系统调用号、处理器架构、指令地址、6个参数的值。具体选择获取什么通过字段k来决定,k相当于seccomp_data结构体的偏移量,若指定k=0,则为获取nr,即系统调用号,若k=4,则为获取处理器架构等。

我们以一个实例对seccomp BPF code进行理解,尝试通过机器码恢复code本身。

 line  CODE  JT   JF      K
=================================0000: 0x20 0x00 0x00 0x00000004  LD | ABS | Word, R0 = arch0001: 0x15 0x00 0x19 0xc000003e  JMP | JEQ after 0x19, R0 == AUDIT_ARCH_X86_64 ?0002: 0x20 0x00 0x00 0x00000000  LD | ABS | Word, R0 = nr0003: 0x35 0x00 0x01 0x40000000  JMP | JGE after 0x01, R0 >= 0x40000000 ?0004: 0x15 0x00 0x16 0xffffffff  JMP | JEQ after 0x16, R0 == 0xFFFFFFFF ?0005: 0x15 0x15 0x00 0x00000000  JMP | JEQ after 0x15, R0 == 0 ?0006: 0x15 0x14 0x00 0x00000001  JMP | JEQ after 0x14, R0 == 1 ?0007: 0x15 0x13 0x00 0x00000002  JMP | JEQ after 0x13, R0 == 2 ?...0026: 0x06 0x00 0x00 0x7fff0000  return SECCOMP_RET_ALLOW0027: 0x06 0x00 0x00 0x00000000  return SECCOMP_RET_KILL

注意第二行的K字段,这里的K指的是AUDIT_ARCH_X86_64,定义于/include/uapi/linux/audit.h,其中为所有架构都定义了独特的标识符,而0xc000003e则是AUDIT_ARCH_X86_64的值。对于整个seccomp code而言,可能需要的外部数据也就只有seccomp_data了。

下面,我们就来通过一些具体的程序示例巩固一下我们的学习成果,使用seccomp BPF code完成自定义的filter规则。

实例

Task 01

实现seccomp BPF filter,过滤x86-64之外所有架构的所有系统调用,过滤execve。

实现代码:

#include <stdio.h>
#include <sys/prctl.h>
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/audit.h>
#include <stddef.h>int main(){struct sock_filter filter[] = {BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, arch)),BPF_JUMP(BPF_JMP | BPF_JEQ, AUDIT_ARCH_X86_64, 0, 4),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, nr)),BPF_STMT(BPF_ALU | BPF_K | BPF_SUB, 59),BPF_JUMP(BPF_JMP | BPF_JEQ, 0, 0, 1),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL)};struct sock_fprog prog = {.len = (unsigned short)(sizeof(filter) / sizeof(struct sock_filter)),.filter = filter,};prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);system("echo HELLO");
}

上述代码实现了对处理器架构与execve的检查,使用了一个ALU类型指令将系统调用号减去59,随后与0相比较。

对于seccomp BPF code而言,使用一个寄存器实际上已经足够了,对于多个返回值,我们可以在BPF code的最后几行进行统一定义,在编写前面的代码时,由于跳转指令的数量不确定,有时可能需要预留跳转数,在code编写完成后再进行计算。而对于seccomp的多个检查,我们完全可以将code除了返回之外的所有代码分片看待,每一片都进行一个检查,不同分片之间互不影响,每个分片中只使用一个寄存器即可完成检查,因此总的seccomp BPF code也只需要一个寄存器即可实现,这就使得我们不需要了解所有的BPF指令即可完美编写seccomp BPF filter。

在加载seccomp规则之前,代码中还执行了一次prctl。这里引用参考资料:

PR_SET_NO_NEW_PRIVS():是在Linux 3.5 之后引入的特性,当一个进程或者子进程设置了PR_SET_NO_NEW_PRIVS 属性,则其不能访问一些无法共享的操作,如setuid、chroot等。配置seccomp-BPF的程序必须拥有Capabilities 中 的CAP_SYS_ADMIN,或者程序已经定义了no_new_privs属性。 若不这样做 非 root 用户使用该程序时 seccomp保护将会失效,设置了 PR_SET_NO_NEW_PRIVS 位后能保证 seccomp 对所有用户都能起作用

Task 02

实现seccomp BPF filter,过滤x86-64之外所有架构的所有系统调用,不允许第一个参数为3的read系统调用。

实现代码:

#include <stdio.h>
#include <sys/prctl.h>
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/audit.h>
#include <stddef.h>
#include <fcntl.h>int main(){struct sock_filter filter[] = {BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, arch)),BPF_JUMP(BPF_JMP | BPF_JEQ, AUDIT_ARCH_X86_64, 0, 5),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, nr)),BPF_JUMP(BPF_JMP | BPF_JEQ, 0, 0, 2),BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, args[0])),BPF_JUMP(BPF_JMP | BPF_JEQ, 3, 1, 0),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL)};struct sock_fprog prog = {.len = (unsigned short)(sizeof(filter) / sizeof(struct sock_filter)),.filter = filter,};prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);int fd = open("/bin/ls", 0);char buffer[8];printf("%d\n", fd);read(fd, buffer, 8);
}

注意BPF_JUMP宏定义的使用,后面的2个参数分别表示条件成立时跳过前面几条指令,条件不成立时跳过前面几条指令。在上面的代码中,首先判断处理器架构,如果不是x86_64则跳转到KILL,随后首先判断系统调用号是不是3,不是则跳转到ALLOW,是则继续执行,判断第一个参数是不是3,如果是则跳转到KILL

0x03. 总结

本文简要分析了seccomp添加规则的流程,以及seccomp BPF的编写方法。

在后面的文章中,我们将尝试尽可能分析CTF pwn题中所有与seccomp有关的绕过姿势,并通过具体的示例进行学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125258.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chatgpt论文润色 降重

用chatgpt最好要给他范例。chatgpt降重原理&#xff1a; https://www.bilibili.com/video/BV1Eh411M7Ug/?spm_id_from333.337.search-card.all.click&vd_sourceebc47f36e62b223817b8e0edff181613 一. 中文论文翻译成英文 广义零样本学习是我的研究方向&#xff0c;下面…

商城小程序开发流程详解:一步步打造专属电商应用

​随着移动互联网的普及&#xff0c;电商行业也迅速发展起来。而商城小程序作为电商行业中的一种新形式&#xff0c;越来越受到企业和个人的关注。那么&#xff0c;如何开发一款专属的商城小程序呢&#xff1f;下面给大家介绍商城小程序的开发流程&#xff0c;帮助大家一步步打…

cad怎么转换成pdf?

cad怎么转换成pdf&#xff1f;cad是什么格式&#xff1f;CAD是计算机辅助设计&#xff08;Computer-Aided Design&#xff09;的缩写&#xff0c;是一种用于制图和设计的软件。CAD软件可以帮助工程师、建筑师、设计师等专业人士创建和编辑各种类型的图形和设计&#xff0c;如平…

Hive On Spark 概述、安装配置、计算引擎更换、应用、异常解决

文章目录 Hadoop 安装Hive 安装Hive On Spark 与 Spark On Hive 区别Hive On SparkSpark On Hive 部署 Hive On Spark查询 Hive 对应的 Spark 版本号下载 Spark解压 Spark配置环境变量指定 Hadoop 路径在 Hive 配置 Spark 参数上传 Jar 包并更换引擎 测试 Hive On Spark解决依赖…

3. 一文快速学懂常用工具——Git(下)

本章讲解知识点 Git 开始入门Git 指令学习节点合并的原理git 常用操作实例本专栏适合于软件开发刚入职的学生或人士,有一定的编程基础,帮助大家快速掌握工作中必会的工具和指令。本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。如专栏内容有错漏,欢迎在评论区指出…

thinkphp链接mqtt服务器,然后在订阅下发布消息

cmd打开项目根目录&#xff0c;安装插件&#xff0c;执行下面的命令 composer require php-mqtt/client执行完成之后会在vendor 目录下有php-mqtt 文件 然后在你的 extend文件下 新建mqtt文件 在文件中新建 Mqtt.php 下面是代码 <?php /** S: * Name: 控制器: * Autho…

安防视频汇聚平台EasyCVR调用播放接口的详细流程

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云存储…

用 docker 创建 jmeter 容器, 实现性能测试

我们都知道&#xff0c;jmeter 可以做接口测试&#xff0c;也可以用于性能测试&#xff0c;现在企业中性能测试也大多使用 jmeter。docker 是最近这些年流行起来的容器部署工具&#xff0c;可以创建一个容器&#xff0c;然后把项目放到容器中&#xff0c;就可以构建出一个独立的…

excel技巧

excel技巧 &#x1f353;选中&#x1f353;填充&#x1f353;日期&#x1f352;&#x1f352; 日期快捷方式&#x1f352;&#x1f352; 日期计算&#x1f352;&#x1f352;时间相减 &#x1f353;求和&#x1f353;去除小数点&#x1f353;美化表格&#x1f352;&#x1f352…

Spring Cloud 之RabbitMQ的学习【详细】

服务通信 分布式系统通信两种方式&#xff1a; 直接远程调用&#xff08;同步&#xff09;借助第三方间接通信&#xff08;异步&#xff09; 同步通讯的问题 Feign就属于同步通讯。存在的如下问题 耦合度高&#xff0c;每次添加新的模块就要修改原有模块的代码性能下降&am…

UNIX 域协议(本地通信协议)

概述 Unix 域协议并不是一个实际的协议族&#xff0c;而是在单个主机上执行客户/服务通信的一种方式。是进程间通信&#xff08;IPC&#xff09;的一种方式。 它提供了两类套接字&#xff1a;字节流套接字 SOCK_STREAM&#xff08;有点像 TCP&#xff09;和数据报套接字 SOCK_…

[论文阅读]Voxel R-CNN——迈向高性能基于体素的3D目标检测

Voxel R-CNN Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection 迈向高性能基于体素的3D目标检测 论文网址&#xff1a;Voxel R-CNN 论文代码&#xff1a;Voxel R-CNN 简读论文 该论文提出了 Voxel R-CNN&#xff0c;这是一种基于体素的高性能 3D 对象…

Go 语言gin框架的web

节省时间与精力&#xff0c;更高效地打造稳定可靠的Web项目&#xff1a;基于Go语言和Gin框架的完善Web项目骨架。无需从零开始&#xff0c;直接利用这个骨架&#xff0c;快速搭建一个功能齐全、性能优异的Web应用。充分发挥Go语言和Gin框架的优势&#xff0c;轻松处理高并发、大…

Qt实现卡牌对对碰游戏

效果 闲来无事&#xff0c;实现一个对对碰游戏&#xff0c;卡牌样式是火影动漫。 先上效果&#xff1a; 卡牌对对碰_火影主题 玩法 启动游戏&#xff0c;进入第一关卡&#xff0c;所有卡牌都为未翻开状态&#xff0c;即背面朝上&#xff1b;点击卡牌&#xff0c;则将卡牌翻开…

jenkins工具系列 —— 删除Jenkins JOB后清理workspace

文章目录 问题现象分析解决思路脚本实现问题现象分析 Jenkins使用过程中,占用空间最大的两个位置: 1 、workspace: 工作空间,可以随便删除,删除后再次构建时间可能会比较长,因为要重新获取一些资源。 2 、job: 存放的是项目的配置、构建结果、日志等。不建议手动删除,…

双亲委派模式

双亲委派模型 双亲委派的工作过程 一个类加载器收到类加载的请求时&#xff0c;它不会马上加载该类&#xff0c;而是把这个请求委托给父加载器去完成&#xff0c;每一个层次的类加载器都是如此&#xff0c;因此所有的类加载请求都必须先通过启动类加载器尝试加载&#xff0c;只…

【快报】正在把教学视频搬运到B站和油管

hello 大家好&#xff0c;我是老戴。 熟悉我的同学知道&#xff0c;我从14年开始录制GIS相关的教学视频&#xff0c;之前是放到优酷上给大家下载&#xff0c;后期发现很多人把视频弄下来淘宝上卖&#xff0c;然后我就把视频整体放到了我自己的网站上。 随着视频录制的数量越来…

HBuilderX实现安卓真机调试

1. 简介 HBuilderX 简称 HX&#xff0c;HBuilder&#xff0c;H 是 HTML 的缩写&#xff0c;Builder 是建设者。是为前端开发者服务的通用 IDE&#xff0c;或者称为编辑器。与 vscode、sublime、webstorm 类似。 它可以开发普通 web 项目&#xff0c;也可以开发 DCloud 出品的 u…

nodejs+vue+python+php基于微信小程序的在线学习平台设计与实现-计算机毕业设计

困扰管理层的许多问题当中,在线学习也是不敢忽视的一块。但是管理好在线学习又面临很多麻烦需要解决,例如&#xff1a;如何在工作琐碎,记录繁多的情况下将在线学习的当前情况反应给课程问题管理员决策,等等。 流,开发一个在线学习平台小程序一方面的可能会更合乎时宜,另一方面来…

略谈Kamailio调试

Kamailio调试办法有很多&#xff0c;我先来抛转&#xff1a; kamcmd cfg.seti core debug 3 一般debug&#xff08;全局参数&#xff09;设置为2&#xff0c;但通过上述命令可临时设置为3&#xff0c;然后收集日志&#xff0c;跟源码对照&#xff0c;以便找到问题。本人通过这…