【C语言】函数指针存疑调试及回调函数编写(结构体内的Callback回调函数传参和虚伪的回调函数__weak声明)

【C语言】函数指针存疑调试及回调函数编写(结构体内的Callback回调函数传参和虚伪的回调函数__weak声明)

文章目录

  • 函数指针存疑调试
    • 函数指针
    • 函数调用
  • 回调函数编写
    • 结构体内的回调函数
    • 虚伪的回调函数
  • 附录:压缩字符串、大小端格式转换
    • 压缩字符串
      • 浮点数
      • 压缩Packed-ASCII字符串
    • 大小端转换
      • 什么是大端和小端
      • 数据传输中的大小端
      • 总结
      • 大小端转换函数

函数指针存疑调试

函数指针

首先 函数指针就是指向函数地址的指针
而地址又可以用(void *)类型来表示

比如函数:

void a(int i)
{printf("i: %d\n",i);
}

其地址就是(void *)&a
那么我们可以定义一个typedef来指向该指针

void a(int i)
{printf("i: %d\n",i);
}
typedef void (*abc)(int i);
fxn=&a;

同样 若a的返回值为int类型 也可以通过强转换来实现

int a(int i)
{printf("i: %d\n",i);
}
typedef void (*abc)(int i);
fxn=(void *)&a;

但不建议这样做 因为这样做的话 fxn就没有了返回值
还是将typedef改成typedef int (*abc)(int i);比较好
这样在调用fxn函数时 也可以获取到返回值

函数调用

现在 我们把函数a的声明改成void
且给fxn赋值时不用(void *)强转
回到最初的样子
思考以下代码:

#include <stdio.h>
typedef void (*abc)(int i);void a(int i)
{printf("i: %d\n",i);
}int main(void)
{abc fxn;fxn=a;printf("取内容调用 %d\n",fxn);fxn(1);((abc) 	fxn)	(2);((void (*)(int)) 	fxn)	(3);(*fxn)(4);(*	(abc) 	fxn)	(5);(*	(void (*)(int)) 	fxn)	(6);fxn=&a;printf("取地址调用 %d\n",fxn);fxn(1);((abc) 	fxn)	(2);((void (*)(int)) 	fxn)	(3);(*fxn)(4);(*	(abc) 	fxn)	(5);(*	(void (*)(int)) 	fxn)	(6);
}

运行结果:

取内容调用 4199760
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
取地址调用 4199760
i: 1
i: 2
i: 3
i: 4
i: 5
i: 6

上半部分就是直接调用fxn函数的内容
下半部分就是调用fxn函数的地址

其中 i为1 2 3时为直接调用 为4 5 6时为取内容再调用

首先 通过两次对fxn变量的打印 我们发现都是4199760
也就是说
函数内容=函数地址

fxn=&fxn

那么反过来取地址上面的内容也成立

*fxn=*(&fxn)

可能有人会说 在typedef的时候 fxn就是地址
确实是这样 因为函数指针只能这样定义
但函数指针与普通的变量指针不同的是

变量指针赋值为变量是无法编译的
变量指针赋值为变量地址得到的是变量地址
函数指针赋值为函数得到的是函数地址
函数指针赋值为函数地址得到的是函数地址

说白了就是编译的问题

严格意义上来说 以下代码的第一行是不规范的 但是编译器优化以后 两者都一样

fxn=a;
fxn=&a;

但是 换成变量和变量指针 则会报错

int b=1;
int * c=b;

这就是函数指针和变量指针的区别

那么回到我们刚刚的测试代码
以下六种调用方法一毛一样:

    fxn(1);((abc) 	fxn)	(2);((void (*)(int)) 	fxn)	(3);(*fxn)(4);(*	(abc) 	fxn)	(5);(*	(void (*)(int)) 	fxn)	(6);

且函数赋值也一样:

fxn=a;
fxn=&a;

所以:
在这里插入图片描述

但为了尽可能满足代码可读性 建议使用以下格式:

fxn=a;
fxn(1);

回调函数编写

此处的回调函数就是刚刚提到的函数指针
回调函数可以通过传参的形式传给其他函数
从而在其他函数内被调用

结构体内的回调函数

此方法经常在TI ADI等生态的sdk被看到
其中 TI最喜欢结构体内套结构体了 就算只有一个变量也要套结构体
比如TI毫米波雷达SDK:
定义:
在这里插入图片描述
在这里插入图片描述
赋值:
在这里插入图片描述

调用:
在这里插入图片描述
可以看到 无论是定义还是赋值 或者调用 都是用的最简单的方法

我们可以定义一个结构体 把刚刚我们定义的函数指针变量放进去:

typedef void (*abc)(int i);typedef struct 
{abc fxn;
}text;

调用时 用最简单的方法赋值并调用:

text stu;
stu.fxn=a;
stu.fxn(1);

完整代码:

#include <stdio.h>
typedef void (*abc)(int i);typedef struct 
{abc fxn;
}text;void a(int i)
{printf("i: %d\n",i);
}int main(void)
{text stu;stu.fxn=a;stu.fxn(1);
}

虚伪的回调函数

在STM32的生态中 比如HAL库内 有很多回调函数
其定义都是用了__weak声明
也就是__attribute__((weak))
是一种GNU编译器里面的修饰变量
用于告诉编译器这个函数是可以被覆写修改的
定义:
在这里插入图片描述
调用:
在这里插入图片描述
而赋值的话 就是用户自己来写了
比如:

void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart==&RF_UART_Handle){		//HAL_UART_Transmit(&RF_UART_Handle,&RxBuffer,1,0xFFFF);HAL_UART_Receive_IT(&RF_UART_Handle,&RxBuffer,1);}
}

这种回调函数虽然叫Callback 但实际上与函数指针无关 不是真正的回调函数

附录:压缩字符串、大小端格式转换

压缩字符串

首先HART数据格式如下:
在这里插入图片描述
在这里插入图片描述
重点就是浮点数和字符串类型
Latin-1就不说了 基本用不到

浮点数

浮点数里面 如 0x40 80 00 00表示4.0f

在HART协议里面 浮点数是按大端格式发送的 就是高位先发送 低位后发送

发送出来的数组为:40,80,00,00

但在C语言对浮点数的存储中 是按小端格式来存储的 也就是40在高位 00在低位
浮点数:4.0f
地址0x1000对应00
地址0x1001对应00
地址0x1002对应80
地址0x1003对应40

若直接使用memcpy函数 则需要进行大小端转换 否则会存储为:
地址0x1000对应40
地址0x1001对应80
地址0x1002对应00
地址0x1003对应00

大小端转换:

void swap32(void * p)
{uint32_t *ptr=p;uint32_t x = *ptr;x = (x << 16) | (x >> 16);x = ((x & 0x00FF00FF) << 8) | ((x >> 8) & 0x00FF00FF);*ptr=x;
}

压缩Packed-ASCII字符串

本质上是将原本的ASCII的最高2位去掉 然后拼接起来 比如空格(0x20)
四个空格拼接后就成了
1000 0010 0000 1000 0010 0000
十六进制:82 08 20
对了一下表 0x20之前的识别不了
也就是只能识别0x20-0x5F的ASCII表
在这里插入图片描述

压缩/解压函数后面再写:

//传入的字符串和数字必须提前声明 且字符串大小至少为str_len 数组大小至少为str_len%4*3 str_len必须为4的倍数
uint8_t Trans_ASCII_to_Pack(uint8_t * str,uint8_t * buf,const uint8_t str_len)
{if(str_len%4){return 0;}uint8_t i=0;memset(buf,0,str_len/4*3);	  for(i=0;i<str_len;i++){if(str[i]==0x00){str[i]=0x20;}}for(i=0;i<str_len/4;i++){buf[3*i]=(str[4*i]<<2)|((str[4*i+1]>>4)&0x03);buf[3*i+1]=(str[4*i+1]<<4)|((str[4*i+2]>>2)&0x0F);buf[3*i+2]=(str[4*i+2]<<6)|(str[4*i+3]&0x3F);}return 1;
}//传入的字符串和数字必须提前声明 且字符串大小至少为str_len 数组大小至少为str_len%4*3 str_len必须为4的倍数
uint8_t Trans_Pack_to_ASCII(uint8_t * str,uint8_t * buf,const uint8_t str_len)
{if(str_len%4){return 0;}uint8_t i=0;memset(str,0,str_len);for(i=0;i<str_len/4;i++){str[4*i]=(buf[3*i]>>2)&0x3F;str[4*i+1]=((buf[3*i]<<4)&0x30)|(buf[3*i+1]>>4);str[4*i+2]=((buf[3*i+1]<<2)&0x3C)|(buf[3*i+2]>>6);str[4*i+3]=buf[3*i+2]&0x3F;}return 1;
}

大小端转换

在串口等数据解析中 难免遇到大小端格式问题

什么是大端和小端

所谓的大端模式,就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

所谓的小端模式,就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

简单来说:大端——高尾端,小端——低尾端

举个例子,比如数字 0x12 34 56 78在内存中的表示形式为:

1)大端模式:

低地址 -----------------> 高地址

0x12 | 0x34 | 0x56 | 0x78

2)小端模式:

低地址 ------------------> 高地址

0x78 | 0x56 | 0x34 | 0x12

可见,大端模式和字符串的存储模式类似。

数据传输中的大小端

比如地址位、起止位一般都是大端格式
如:
起始位:0x520A
则发送的buf应为{0x52,0x0A}

而数据位一般是小端格式(单字节无大小端之分)
如:
一个16位的数据发送出来为{0x52,0x0A}
则对应的uint16_t类型数为: 0x0A52

而对于浮点数4.0f 转为32位应是:
40 80 00 00

以大端存储来说 发送出来的buf就是依次发送 40 80 00 00

以小端存储来说 则发送 00 00 80 40

由于memcpy等函数 是按字节地址进行复制 其复制的格式为小端格式 所以当数据为小端存储时 不用进行大小端转换
如:

uint32_t dat=0;
uint8_t buf[]={0x00,0x00,0x80,0x40};memcpy(&dat,buf,4);float f=0.0f;f=*((float*)&dat); //地址强转printf("%f",f);

或更优解:

   uint8_t buf[]={0x00,0x00,0x80,0x40};   float f=0.0f;memcpy(&f,buf,4);

而对于大端存储的数据(如HART协议数据 全为大端格式) 其复制的格式仍然为小端格式 所以当数据为小端存储时 要进行大小端转换
如:

uint32_t dat=0;
uint8_t buf[]={0x40,0x80,0x00,0x00};memcpy(&dat,buf,4);float f=0.0f;swap32(&dat); //大小端转换f=*((float*)&dat); //地址强转printf("%f",f);

或:

uint8_t buf[]={0x40,0x80,0x00,0x00};memcpy(&dat,buf,4);float f=0.0f;swap32(&f); //大小端转换printf("%f",f);

或更优解:

uint32_t dat=0;
uint8_t buf[]={0x40,0x80,0x00,0x00};float f=0.0f;dat=(buf[0]<<24)|(buf[0]<<16)|(buf[0]<<8)|(buf[0]<<0)f=*((float*)&dat);

总结

固 若数据为小端格式 则可以直接用memcpy函数进行转换 否则通过移位的方式再进行地址强转

对于多位数据 比如同时传两个浮点数 则可以定义结构体之后进行memcpy复制(数据为小端格式)

对于小端数据 直接用memcpy写入即可 若是浮点数 也不用再进行强转

对于大端数据 如果不嫌麻烦 或想使代码更加简洁(但执行效率会降低) 也可以先用memcpy写入结构体之后再调用大小端转换函数 但这里需要注意的是 结构体必须全为无符号整型 浮点型只能在大小端转换写入之后再次强转 若结构体内采用浮点型 则需要强转两次

所以对于大端数据 推荐通过移位的方式来进行赋值 然后再进行个别数的强转 再往通用结构体进行写入

多个不同变量大小的结构体 要主要字节对齐的问题
可以用#pragma pack(1) 使其对齐为1
但会影响效率

大小端转换函数

直接通过对地址的操作来实现 传入的变量为32位的变量
中间变量ptr是传入变量的地址

void swap16(void * p)
{uint16_t *ptr=p;uint16_t x = *ptr;x = (x << 8) | (x >> 8);*ptr=x;
}void swap32(void * p)
{uint32_t *ptr=p;uint32_t x = *ptr;x = (x << 16) | (x >> 16);x = ((x & 0x00FF00FF) << 8) | ((x >> 8) & 0x00FF00FF);*ptr=x;
}void swap64(void * p)
{uint64_t *ptr=p;uint64_t x = *ptr;x = (x << 32) | (x >> 32);x = ((x & 0x0000FFFF0000FFFF) << 16) | ((x >> 16) & 0x0000FFFF0000FFFF);x = ((x & 0x00FF00FF00FF00FF) << 8) | ((x >> 8) & 0x00FF00FF00FF00FF);*ptr=x;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125188.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——双向链表的实现

一、双向链表的结构 注意&#xff1a;双向链表又称带头双向循环链表 这⾥的“带头”跟前⾯我们说的“头节点”是两个概念&#xff0c;实际前⾯的在单链表阶段称呼不严 谨&#xff0c;但是为了同学们更好的理解就直接称为单链表的头节点。 带头链表⾥的头节点&#xff0c;实际…

MySQL---数据用户管理和索引

DDL&#xff1a;CTEATE DROP ALTER dml&#xff1a;对数据进行管理 update insert into delete truncate dpl&#xff1a;查询语句 select dcl&#xff1a;权限控制语句 grant revoke 数据库用户管理 创建用户 修改用户权限 删除用户 grant要在终端执行 创建用户 cr…

function函数指针和lamada的[]和[=]注意事项

在工作的过程中&#xff0c;lamda表达式的 重点&#xff1a; 1.function对象存储函数指针。 2.lamada表达式&和捕捉的方式 lamda传入引用&&#xff0c;导致作用域消失&#xff0c;最终报错 std::function<void()> pFun; void GetNum1(const std::function<…

企业在招标流程中面临的 6 大挑战

采购中的招标是一种采购策略&#xff0c;包括向不同的销售商/供应商询价&#xff08;RFQ&#xff09;和索取资料&#xff08;RFI&#xff09;&#xff0c;以比较其特点、价格和功能。 工作团队在招标采购流程中投入了数个小时&#xff0c;但在整个过程中仍不得不忍受失望和不适…

【抓包分析】通过ChatGPT解密还原某软件登录算法实现绕过手机验证码登录

文章目录 &#x1f34b;前言实现效果成品广告抓包分析一、定位加密文件二、编辑JS启用本地替换 利用Chatgpt进行代码转换获取计划任务id模拟数据请求最后 &#x1f34b;前言 由于C站版权太多&#xff0c;所有的爬虫相关均为记录&#xff0c;不做深入&#xff01; 今天发现gith…

数据结构 | 算法的时间复杂度和空间复杂度【详解】

数据结构 | 算法的时间复杂度和空间复杂度【详解】 文章目录 数据结构 | 算法的时间复杂度和空间复杂度【详解】1. 什么是数据结构&#xff1f;2. 什么是算法&#xff1f;3. 算法效率4. 时间复杂度4.1 时间复杂度的概念4.2 推导大O阶的方法&#xff1a;4.3 常见时间复杂度计算举…

Leetcode—274.H指数【中等】

2023每日刷题&#xff08;十三&#xff09; Leetcode—274.H指数 算法思想 参考自灵茶山艾府 实现代码 int minValue(int a, int b) {return a < b ? a : b; }int hIndex(int* citations, int citationsSize){int cnt[5001] {0};int i;for(i 0; i < citationsSize; …

SpringBoot 公司推广系统 公司广告系统

SpringBoot 公司推广系统 公司广告系统 系统功能 首页功能: 广告展示 方案列表 站内搜索 资讯 查看详细咨询 登录注册 收藏 咨询方案 在线客服实时聊天 后台管理功能: 系统管理分为: 用户管理 角色管理 客户管理 首页轮播管理 公告管理 方案管理: 方案管理 资讯管理: 类型管…

【C++项目】高并发内存池第五讲内存回收释放过程介绍

内存回收 1.ThreadCache2.CentralCache3.PageCache 项目源代码&#xff1a;高并发内存池 1.ThreadCache void ThreadCache::Deallocate(void* ptr, size_t size) {assert(ptr);assert(size < MAX_BYTES);//计算在哪号桶中&#xff0c;然后插入进去size_t index SizeClass…

c++ pcl 选取点云某一点反馈XYZ坐标的代码

看了看以前的代码&#xff0c;有一小段代码很有意思&#xff0c;是关于pcl点云处理的。 如有帮助&#xff0c;点赞收藏关注&#xff01;&#xff01;&#xff01; 读取点云数据&#xff0c;想可视化点云数据&#xff0c;并根据选择&#xff0c;实时显示点云的空间坐标数值。 接…

关于FreeTypeFont‘ object has no attribute ‘getsize‘问题的解决方案

引言 这个问题是在训练yolov5_obb项目遇到的&#xff0c;大概率又是环境问题。如下图&#xff1a; 解决方法 出现这个问题是Pillow版本太高了&#xff0c;下载低版本的&#xff1a; pip install Pillow9.5 OK&#xff01;

Java List Set Map

一、List 1.1 ArrayList 1.2 LinkedList 二、Set 2.1 HashSet 2.2 TreeSet 2.3 LinkedHashSet 三、Map 3.1 HashMap 3.2 TreeMap 3.3 LinkedHashMap 四、对比 类型底层结构重复null值场景备注查询删除新增ListArrayList动态数组可允许快速随机访问元素0(1)0(n)尾部增加0&a…

[已解决]虚拟机之前能正常上网,重启之后无法连接网络问题的解决方法

虚拟机之前网络正常&#xff0c;重启之后却始终连接不上网络。 找了许多方法&#xff0c;终于发现一种便捷有效的方法。 解决方法如下&#xff1a; 1、将网络模式更改为NAT模式., 2、打开终端窗口&#xff0c;输入如下命令。 sudo service network-manager stopsudo rm /var/l…

LeetCode | 17.04.消失的数字和189.旋转数组

LeetCode | 17.04.消失的数字和189.旋转数组 文章目录 LeetCode | 17.04.消失的数字和189.旋转数组17.04.消失的数字方法一&#xff1a;方法二&#xff1a;方法三&#xff1a;方法二的代码方法三的代码 189.旋转数组思路一思路二思路三 17.04.消失的数字 OJ链接 这里题目要求…

10、电路综合-基于简化实频的宽带匹配电路设计方法

10、电路综合-基于简化实频的宽带匹配电路设计方法 网络综合和简化实频理论学习概述中的1-9介绍了SRFT的一些基本概念和实验方法&#xff0c;终于走到了SRFT的另一个究极用途&#xff0c;宽带匹配电路的设计。 1、之前的一些回顾与总结 之前也给出了一些电路综合的案例&…

实时定位和配送追踪:开发万岳同城外卖APP的关键技术特性

随着生活节奏的不断加快&#xff0c;外卖服务已经成为许多人日常生活中不可或缺的一部分。无论是工作日的午餐&#xff0c;还是周末的家庭聚会&#xff0c;外卖APP已经成为满足各种美食需求的首选方式。然而&#xff0c;同城外卖APP的成功不仅仅取决于美味的食物选择&#xff0…

leetCode 2578. 最小和分割 + 排序 + 贪心 + 奇偶分组(构造最优解)

2578. 最小和分割 - 力扣&#xff08;LeetCode&#xff09; 给你一个正整数 num &#xff0c;请你将它分割成两个非负整数 num1 和 num2 &#xff0c;满足&#xff1a; num1 和 num2 直接连起来&#xff0c;得到 num 各数位的一个排列。 换句话说&#xff0c;num1 和 num2 中所…

【零基础抓包】Fiddler超详细教学(一)

​Fiddler 1、什么是 Fiddler? Fiddler 是一个 HTTP 协议调试代理工具&#xff0c;它能够记录并检查所有你的电脑和互联网之间的 HTTP 通讯。Fiddler 提供了电脑端、移动端的抓包、包括 http 协议和 https 协议都可以捕获到报文并进行分析&#xff1b;可以设置断点调试、截取…

【脑机接口 论文】利用脑机接口帮助ALS患者恢复对家用设备的控制science

英文题目 中文题目 稳定的语音BCI解码使ALS患者在3个月内无需重新校准即可进行控制论文下载&#xff1a;算法程序下载&#xff1a;摘要1 项目介绍2 方法2.1实时神经解码2.2算法手术植入:神经解码模型: 数据收集实验2.3稳定的解码器性能超过三个月 3 电极的贡献4 讨论5结论 中文…

python 打印与去除不可见字符 \x00

# 此处不是真实的\x00 被 空格替换了 text "boot_1__normal/ " print(text.strip()"boot_1__normal/") # 打印不可见字符 print(repr(text))>>> False boot_1__normal/\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0…