使用FastAPI部署Ultralytics YOLOv5模型

YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。

Python有几个web框架,其中最突出的两个是Flask和FastAPI。Flask是一个轻量级且灵活的框架,非常适合中小型web应用程序,而FastAPI是一个相对较新的框架,旨在快速轻松地构建api。

FastAPI

FastAPI是一个现代的web框架,可以用于基于OpenAPI标准使用Python 3.6+构建api。FastAPI提供的代码只需进行最小的调整即可用于生产环境。FastAPI与ASGI(异步服务器网关接口)的集成使其成为最快的Python框架之一。

设置环境

建立虚拟环境是软件开发和数据科学中至关重要的第一步。虽然并不总是强制性的,但强烈建议这样做。虚拟环境隔离了项目的依赖项,确保了稳定性和兼容性。这种做法简化了版本管理,使项目更有组织性和可维护性。简而言之,它是提高项目质量的最佳实践。

 python3 -m venv my_project

然后使用命令激活来启动虚拟环境

 my_project/bin/activate

训练定制YOLOv5模型

我们这里不介绍详细的训练流程,第一是因为官方有代码可以直接使用,第二是因为我们主要介绍部署的步骤。

这里使用6种食物数据集进行训练,这些数据集在Roboflow上进行了预先注释,可以对鸡翅,炸薯条,饺子,热狗,甜甜圈,华夫饼图像进行分类。如果你有自己的图像并想要创建一个数据集,你也可以在Roboflow上手动注释它们。

 python train.py - img 416 - batch 16 - epochs 100 - data {dataset.location}/data.yaml - cfg ./models/custom_yolov5s.yaml - weights '' - name yolov5s_results - cache

只需要上面一句就可以进行训练,结果如下

精度§: 0.763(所有类别的平均值)

召回率®: 0.662(所有类别的平均值)

mAP50 (IoU 0.5的平均精度):0.712(所有类别的平均值)

mAP50-95: 0.4(所有类别的平均值)

使用FastAPI进行模型推理

下面是一个最简单的项目目录结构模板:

 ├── README.md├── main.py # The main program├── model│   ├── __init__.py│   └── best.pt # Custom training model ├── requirements.in # Used to generate requirements.txt├── requirements.txt # Install dependencies: pip install -r requirements.txt├── segmentation.py # Importing the local YOLOv5 and resize images└── yolov5 # You can obtain this from https://github.com/ultralytics/yolov5

main.py

这是一个有3个函数:

@app.get(’ /notify/v1/health '),这是检查应用程序运行状况的端点。它返回一个带有消息“OK”的JSON响应。这个端点用于检查Kubernetes的readinessProbe和liveessprobe。

@app.post(" /object-to-json "),这个端点处理图像中对象的检测,并以JSON格式返回结果。它需要一个图像文件作为输入。

@app.post(" /object-to-img "),这个端点执行对象检测并返回带有注释对象的图像。它还需要一个图像文件作为输入,并将带注释的图像作为响应发送。

 #import statementfromfastapiimportFastAPI, File#building the APIfromsegmentationimportget_yolov5, get_image_from_bytes#segmentation functionsfromstarlette.responsesimportResponse#handling API responsesimportiofromPILimportImageimportjsonfromfastapi.middleware.corsimportCORSMiddleware#initialize and obtain the modelmodel=get_yolov5() #FastAPI application setupapp=FastAPI(title="Custom YOLOV5 Machine Learning API",description="""Obtain object value out of imageand return image and json result""",version="0.0.1",)#CORS (Cross-Origin Resource Sharing) middleware, allows the API to be accessed from different domains or origins. origins= ["http://localhost","http://localhost:8000","*"]app.add_middleware(CORSMiddleware,allow_origins=origins,allow_credentials=True,allow_methods=["*"],allow_headers=["*"],)#Checking health of application, returns “OK” JSON response@app.get('/notify/v1/health')defget_health():"""Usage on K8SreadinessProbe:httpGet:   path: /notify/v1/healthport: 80livenessProbe:httpGet:path: /notify/v1/healthport: 80:return:dict(msg='OK')"""returndict(msg='OK')@app.post("/object-to-json")asyncdefdetect_food_return_json_result(file: bytes=File(...)):input_image=get_image_from_bytes(file)results=model(input_image)detect_res=results.pandas().xyxy[0].to_json(orient="records")  # JSON img1 predictionsdetect_res=json.loads(detect_res)return {"result": detect_res}@app.post("/object-to-img")asyncdefdetect_food_return_base64_img(file: bytes=File(...)):input_image=get_image_from_bytes(file)results=model(input_image)results.render()  # updates results.imgs with boxes and labelsforimginresults.imgs:bytes_io=io.BytesIO()img_base64=Image.fromarray(img)img_base64.save(bytes_io, format="jpeg")returnResponse(content=bytes_io.getvalue(), media_type="image/jpeg")

segmentation.py定义了2个方法:

1、Get_yolov5():这是yolov5可以使用定制模型的地方。

Model = torch.hub.load('。/yolov5 ', ’ custom ', path= ’ ./model/best.pt ', source= ’ local ‘):它从本地目录加载自定义yolov5模型。’ custom ‘参数指定模型架构,’ ./model/best.pt ‘是定制训练模型文件的路径,’ source '表示模型位于本地。conf = 0.5:设置对象检测的置信度阈值。只有置信水平大于0.5的对象才会被包含在检测结果中。

2、Get_image_from_bytes():调整图像大小以确保与模型期望的兼容性。

input_image = image .open(io.BytesIO(binary_image)).convert(" RGB "):它读取二进制图像数据并将其转换为RGB格式的PIL (Python Imaging Library)图像。它计算图像的宽度和高度,并确定调整因子以适应指定的max_size。Resized_image是通过根据计算的尺寸调整输入图像的大小来创建的,确保它不超过最大大小。

启动项目

在终端上输入以下命令

 uvicorn main:app — reload — host 0.0.0.0 — port 8000

成功运行程序时,它将看起来像这样

测试结果

在浏览器中打开http://127.0.0.1:8000/docs#/。你应该看到有3个端点的Open API文档:

/notify/v1/health 返回一个JSON响应,其中包含消息’ OK '。你可以通过点击try it out并执行来检查,输出如下:

/object-to-json 处理图像中对象的检测,并以JSON格式返回结果。它需要一个图像文件作为输入。

/object-to-img 执行对象检测并返回带有注释对象的图像。它还需要一个图像文件作为输入,并将带注释的图像作为响应发送。

这样我们的程序就完成了

总结

这里我们看到了yolov5模型的部署的完整过程,并且这个过程是可以应用到生产环境的。但是这里我们发现了一个新的命令 ‘uvicorn’.

Uvicorn 是基于 uvloop 和 httptools 构建的非常快速的 ASGI 服务器。因为 Uvicorn 是一个非常快速、可靠且易于使用的 ASGI 服务器,可以在处理大量并发连接时保持稳定和高效。Uvicorn 还支持 WebSocket 和 HTTP/2 等新特性,它符合 FastAPI 提倡的现代 Web 开发理念。所以使用 Uvicorn 作为 FastAPI 的 Web 服务器是一个很好的选择。

https://avoid.overfit.cn/post/c23627999f1a44689000105eb315180e

作者:auliyafirdaus

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CGAL+QT

先安装CGAL和QT 安装完QT其中MSVC 这两个没配置 1、x32配置选择的是 x64配置选择的是 2、CGAL 5.4.5 - Manual: Using CGAL on Windows (with Visual C) 参数文章配置一些环境变量 3、 测试 新建build 进行cmake QT、Boost、CGAL都自动匹配上了(环境变量已经配…

FastAPI框架学习笔记(快速入门FastAPI框架)

1. 写在前面 今天整理一篇后端框架的笔记, fastapi框架是比较主流的后端异步web框架,关键是python语言可以写,正好公司最近安排了一些后端服务的活, 所以就看了一个fastapi框架的入门课程(链接在底部),完成任务&#…

lua-web-utils和proxy设置示例

以下是一个使用lua-web-utils和proxy的下载器程序: -- 首先安装lua-web-utils库 local lwu require "lwu" ​ -- 获取服务器 local function get_proxy()local proxy_url "duoipget_proxy"local resp, code, headers, err lwu.fetch(proxy_…

后端实现大文件分片上传

项目框架 net6 webapi 放开上传大小限制 放开代码 | 框架层限制 在 Program.cs 文件中添加如下代码 不然会出现下面的限制错误 From表单限制:Failed to read the request form. Multipart body length limit 134217728 exceeded 请求体超长:Request bo…

Win10中Pro/E鼠标滚轮不能缩放该怎么办?

Pro/E安装好后,鼠标滚轮不能缩放模型,该怎么办?问题多发生在win8/win10上,新装了PROE,发现滑动鼠标中键不能放大缩小。 彩虹图纸管理软件_图纸管理系统_图纸文档管理软件系统_彩虹EDM【官网】彩虹EDM图纸管理软件系统…

【PyQt】调整子控件的层级以调整绘制的先后顺序

简述 qt中貌似没有直接设置z序的函数,但对应的有其他调整z序的方法: QWidget.raise_():置顶 QWidget.lower():置底 QWidget.stackUnder(wid):置于指定控件之下 其中关键函数是QWidget.stackUnder(wid),利…

Python---使用turtle模块+for循环绘制五角星---利用turtle(海龟)模块

首先了解涉及的新词汇,编程外国人发明的,所以大部分是和他们语言相关,了解对应意思,可以更好理解掌握。 import 英 /ˈɪmpɔːt/ n. 进口,进口商品;输入,引进;重要性;…

【Unity】3D跑酷游戏

展示 finish_all * 方块跑酷 1.教程链接 翻墙:https://www.youtube.com/watch?v9ZEu_I-ido4&listPLPV2KyIb3jR53Jce9hP7G5xC4O9AgnOuL&index3 2.基础制作 最终成果 2.1 基本场景 1.创建Cube作为跑道 1)记得把位置Reset; 2&#…

Linux部署Redis Cluster高可用集群(附带集群节点添加删除以及槽位分配操作详解)

目录 一、前言二、下载安装Redis2.1、选择需要安装的Redis版本2.2、下载并解压Redis2.3、编译安装Redis 三、部署Redis Cluster高可用集群3.1、准备配置文件3.2、启动Redis服务3.3、创建Redis集群3.4、查看集群关系3.5、连接集群Redis进行数据读写以及重定向测试3.6、故障转移和…

使用Scala和Sttp库编写爬虫程序

以下是一个使用Scala和Sttp库编写的视频爬虫程序,该程序使用了proxy来获取IP。请注意,这个示例需要在上找到一个具体的视频链接,然后将其传递给crawlVideo函数。 import scala.util.{Failure, Success} import scala.concurrent.{Future, Ex…

基于计算机视觉的坑洼道路检测和识别-MathorCup A(深度学习版本)

1 2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛 赛道 A:基于计算机视觉的坑洼道路检测和识别 使用深度学习模型,pytorch版本进行图像训练和预测,使用ResNet50模型 2 文件夹预处理 因为给定的是所有图片都在一个文件夹里面&#xf…

安信可小安派AiPi 代码下载

安信可小安派AiPi 代码下载笔记记录 AiPi 代码下载(直接使用命令行操作,仅需要Type-C接口线即可) 在完成环境搭建,和代码编写前提下,使用Type-C接口线下载代码,当然可以自己使用usb-ttl串口线下载程序&am…

SQL server 代理服务启动和查看

设置重启 使用管理员权限登录到运行 SQL Server 代理服务的计算机。 打开 Windows 服务管理器。可以通过按下 Windows 键 R,然后键入 "services.msc" 并按 Enter 来打开服务管理器。 在服务列表中,找到 "SQL Server Agent" 服务&…

回归算法|长短期记忆网络LSTM及其优化实现

本期文章将介绍LSTM的原理及其优化实现 序列数据有一个特点,即“没有曾经的过去则不存在当前的现状”,这类数据以时间为纽带,将无数个历史事件串联,构成了当前状态,这种时间构筑起来的事件前后依赖关系称其为时间依赖&…

解决:谷歌浏览器访问http时,自动转https访问的问题

问题背景:某个系统网站,之前一直用https域名访问,现在改成http域名后,用http访问,谷歌浏览器会自动跳转到https。 解决方法: 在浏览器中输入网址:chrome://net-internals/#hsts -》 在“Delete…

解决git action定时任务执行失败的方法

为了测试git action定时任务是否有效,你可能选择一个最近的时间测试, 但是发现怎么也触发不了,是不是觉得很苦恼。但是同样的时间,在第二天的定时任务又能成功运行。 这是什么原因? 原因就在上图,git act…

多测师肖sir_高级金牌讲师__接口测试之tonken (5.6)

接口测试之tonken 网站:http://shop.duoceshi.com/login?redirect2Fdashboard 第一个接口:uiid接口 uiid接口url:http://manage.duoceshi.com/auth/code test中语句: var jsonData JSON.parse(responseBody); postman.setEnvi…

NewStarCTF2023week4-溯源

题目描述是冰蝎进行WebShell连接的流量包,我们需要找到攻击者获取到的服务器用户名和服务器内网IP地址。 先介绍一下常见webshell工具的流量特征: 1、中国菜刀 请求体中存在eval、base64等特征字符; 连接过程中使用base64编码对发送的指令…

深入探究深度学习、神经网络与卷积神经网络以及它们在多个领域中的应用

目录 1、什么是深度学习? 2、深度学习的思想 3、深度学习与神经网络 4、深度学习训练过程 4.1、先使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练) 4.2、后自顶向下的监督学习(就是通过带标签的数…

jenkins自动化操作步骤(gitblit)

1、登陆地址: http://xxxxxxxxx.org:xxxx/ admin/xxxx 2、创建任务 选择构建一个maven项目 3、配置 最多只保留一天一个任务 选择git仓库和账号密码 选择代码对应分支 build项: 1)使用父项目的pom文件:k56-boot/pom.xml 2&…