东南大学轴承故障诊断(Python代码,CNN模型,适合复合故障诊断研究)

运行代码要求:

代码运行环境要求:Keras版本>=2.4.0,python版本>=3.6.0

本次实验主要是在两种不同工况数据下,进行带有复合故障的诊断实验,没有复合故障的诊断实验。

实验结果证明,针对具有复合故障的数据集,需要 研发特定的算法,才能更好区分复合故障数据集。

1.东南大学采集数据平台

图片 

 数据

该数据集包含2个子数据集,包括轴承数据和齿轮数据,这两个子数据集都是在传动系动力学模拟器(DDS)上获取的。(第一个文件夹是轴承数据,第二个文件夹是齿轮数据,本次是针对齿轮数据进行故障诊断)

 

 本实验主要是利用轴承数据(第一个文件夹的数据)进行故障诊断,轴承具体数据

有两种工况,转速-负载配置设置为20-0和30-2。

每种工况下有:ball(滚动体故障)、comb(复合故障,即包含滚动体、外圈、内圈故障),health(健康)、inner(内圈故障)、outer(外圈故障)

code_20.py是只使用20_0工况下ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集诊断。没有使用复合故障数据集

code_20_0.py是使用20_0工况下ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)、comb(复合故障,即包含滚动体、外圈、内圈故障)诊断

code_30.py是只使用30_2工况下ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集诊断。没有使用复合故障数据集

code_30_2.py是使用30_2工况下ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)、comb(复合故障,即包含滚动体、外圈、内圈故障)诊断

模型

 

 

首先在20-0工况数据集下实验

2.1.使用ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集。没有使用复合故障数据集

每类故障有1000个样本(一共4000个样本),训练集与测试集比例是9:1(训练集:3600个样本,测试集:400个样本)

 

 

测试集的混淆矩阵(以样本个数呈现) 

 

测试集的混淆矩阵(以准确率数呈现)  

 

 

2.2.使用ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集,comb(复合故障,即包含滚动体、外圈、内圈故障)。

每类故障有1000个样本(一共5000个样本),训练集与测试集比例是9:1(训练集:4500个样本,测试集:500个样本)

从结果可以看出,CNN对带有复合故障的数据集诊断准确率不高,需要区分复合故障与单独故障的特定算法, 才能提高准确率

 

测试集的混淆矩阵(以样本个数呈现)  

 

测试集的混淆矩阵(以准确率数呈现)   

 

 

 3.在30-2工况数据集下实验

3.1.使用ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集。没有使用复合故障数据集

每类故障有1000个样本(一共4000个样本),训练集与测试集比例是9:1(训练集:3600个样本,测试集:400个样本)

 

测试集的混淆矩阵(以样本个数呈现)  

 

测试集的混淆矩阵(以准确率数呈现)   

 

3.2. 

使用ball(滚动体故障)、health(健康)、inner(内圈故障)、outer(外圈故障)数据集,comb(复合故障,即包含滚动体、外圈、内圈故障)。

每类故障有1000个样本(一共5000个样本),训练集与测试集比例是9:1(训练集:4500个样本,测试集:500个样本)

 从结果可以看出,CNN对带有复合故障的数据集诊断准确率虽然不低,但是准确率不稳定。

 

 

 

测试集的混淆矩阵(以样本个数呈现)   

 

测试集的混淆矩阵(以准确率数呈现)    

 

 本次项目所有代码和数据放在了压缩包

import pandas as pd
import pandas as pd
import numpy as np
from keras.utils import np_utils
from sklearn import preprocessing
import tensorflow as tf
from matplotlib import pyplot as plt
#压缩包:https://mbd.pub/o/bread/ZJyTlp9y

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11501.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试—Redis相关

文章目录 一、概述二、缓存1、缓存穿透2、缓存击穿3、缓存雪崩4、双写一致性5、持久化6、数据过期策略7、数据淘汰策略 三、分布式锁四、其它面试题1、主从复制2、哨兵3、分片集群结构4、I/O多路复用 一、概述 使用场景: Redis的数据持久化策略有哪些什么是缓存穿透…

智能安全配电装置应用场景有哪些?

安科瑞 华楠 一、应用背景 电力作为一种清洁能源,给人们带来了舒适、便捷的电气化生活。与此同时,由于使用不当,维护不及时等原因引发的漏电触电和电气火灾事故,也给人们的生命和财产带来了巨大的威胁和损失。 为了防止低压配电…

SkyEye与Jenkins的DevOps持续集成解决方案

在技术飞速发展的当下,随着各行各业的软件逻辑复杂程度提升带来的需求变更,传统测试已无法满足与之相对应的一系列测试任务,有必要引入一个自动化、可持续集成构建的DevOps平台来解决此类问题。本文将主要介绍SkyEye与Jenkins的持续集成解决方…

C++OpenCV(5):图像模糊操作(四种滤波方法)

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 🔆 OpenCV项目地址及源代码:点击这里 文章目录 图像模糊操作均值滤波高斯滤波中值滤波双边滤波 图像模糊操作 关于图片的噪声:指的是图片中存在的不必要或者多余的干扰数…

windows下搭建php开发环境

http://wed.xjx100.cn/news/139397.html?actiononClick https://www.bilibili.com/read/cv23429835/ https://www.php.cn/faq/498307.html 安装iis 选择卸载程序 安装php 官网https://www.php.net/下载 选择线程安全 国内地址 下载完成后解压放到想存放的路径 添加p…

数据可视化 - 动态柱状图

基础柱状图 通过Bar构建基础柱状图 from pyecharts.charts import Bar from pyecharts.options import LabelOpts # 使用Bar构建基础柱状图 bar Bar() # 添加X轴 bar.add_xaxis(["中国", "美国", "英国"]) # 添加Y轴 # 设置数值标签在右侧 b…

深入浅出之Docker Compose详解

目录 1.Docker Compose概述 1.1 Docker Compose 定义 1.2 Docker Compose产生背景 1.3 Docker Compose 核心概念 1.4 Docker Compose 使用步骤 1.5 Docker Compose 常用命令 2. Docker Compose 实战 2.1 Docker Compose下载和卸载 2.2 Docker Compose 项目概述 2.3 Do…

北航投资已投企业四象科技成功发射三颗卫星

1箭4星!2023年7月23日10时50分,我国在太原卫星发射中心使用长征二号丁运载火箭,成功将四象科技“矿大南湖号”SAR遥感卫星、“虹口复兴号”光学遥感卫星、“中电农创号”热红外遥感卫星以及银河航天灵犀03星共4颗卫星发射升空,卫星…

idea springBoot 部署多个项目打开Run Dashboard 窗口

在部署springcloud 项目的时候 本地调试,有可能需要全部启动所有服务,单个部署比较麻烦,通过Run DashBoard 窗口可以完美实现 1.先打开项目的文件地址找到workspace.xml文件,在项目下的.idea\workspace.xml 2. ctrlf 找到RunDash…

SpringMVC-mybatis,SQL语句中误用了desc关键字,导致报错。

17-Jul-2023 21:26:22.295 淇℃伅 [RMI TCP Connection(2)-127.0.0.1] org.apache.catalina.core.ApplicationContext.log 1 Spring WebApplicationInitializers detected on classpath 17-Jul-2023 21:26:22.621 淇℃伅 [RMI TCP Connection(2)-127.0.0.1] org.apache.catalin…

小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络

小白的机器学习之路(四) 引子神经网络的基本结构反向传播算法和激活函数优化器如何通过pytorch搭建自己的BP network 引子 当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),考虑到上次研究深度…

springboot开放实验室管理系统【纯干货分享,免费领源码03361】

摘 要 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是使用动态网页开发技术java作为系统的开发语言,M…

【Leetcode】二叉树进阶面试题

文章目录 二叉树创建字符串二叉树分层遍历(从前开始)二叉树分层遍历(从后开始)二叉树的最近公共祖先二叉搜索树与双向链表从前序与中序遍历序列构造二叉树从中序与后序遍历序列构造二叉树二叉树的前序遍历(非递归&…

GitLab 删除项目

1.点击头像 2.点击Profile 3.选择要删除的项目点进去 4.settings-general-Advances-expand 5.然后在弹出框中输入你要删除的项目名称即可

Java - 注解开发

注解开发定义bean Component的衍生注解 Service: 服务层的注解 Repository: 数据层的注解 Controller: 控制层的注解 纯注解开发 bean管理 bean作用范围 在类上面添加Scope(“singleton”) // prototype: 非单例 bean生命周期 PostCon…

关于Spring的bean的相关注解以及其简单使用方法

一、前置工作 第一步&#xff1a;创建一个maven项目 第二步&#xff1a;在resource中创建一个名字叫做spring-config.xml的文件&#xff0c;并把以下代码复制粘贴 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.sprin…

redis-cluster 创建及监控

集群命令 cluster info&#xff1a;打印集群的信息。 cluster nodes&#xff1a;列出集群当前已知的所有节点&#xff08;node&#xff09;的相关信息。 cluster meet <ip> <port>&#xff1a;将ip和port所指定的节点添加到集群当中。 cluster addslots <slot…

《Federated Unlearning via Active Forgetting》论文精读

文章目录 1、概述2、方法实验主要贡献框架概述 3、实验结果比较方法实验结果忘却完整性忘却效率模型实用性 4、总结 原文链接&#xff1a; Federated Unlearning via Active Forgetting 1、概述 对机器学习模型隐私的⽇益关注催化了对机器学习的探索&#xff0c;即消除训练数…

基于JAVA SpringBoot和Vue高考志愿填报辅助系统

随着信息技术在管理中的应用日益深入和广泛&#xff0c;管理信息系统的实施技术也越来越成熟&#xff0c;管理信息系统是一门不断发展的新学科&#xff0c;任何一个机构要想生存和发展&#xff0c;要想有机、高效地组织内部活动&#xff0c;就必须根据自身的特点进行管理信息时…

学习笔记|大模型优质Prompt开发与应用课(二)|第二节:超高产文本生成机,传媒营销人必备神器

文章目录 01 文字写作技能的革新&#xff0c;各行各业新机遇四大类常见文字工作新闻记者的一天新闻记者的一天–写策划prompt 新闻记者的一天–排采访prompt生成结果prompt生成结果 大模型加持&#xff0c;文字写作我们如何提效营销创作营销创作-使用预置法为不同平台生成文案p…