第87步 时间序列建模实战:LSTM回归建模

基于WIN10的64位系统演示

一、写在前面

这一期,我们介绍大名鼎鼎的LSTM回归。

同样,这里使用这个数据:

《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

二、LSTM回归

(1)LSTM简介

LSTM (Long Short-Term Memory) 是一种特殊的RNN(递归神经网络)结构,由Hochreiter和Schmidhuber在1997年首次提出。LSTM 被设计出来是为了避免长序列在训练过程中的长期依赖问题,这是传统 RNNs 所普遍遇到问题。

(a)LSTM 的主要特点:

(a1)三个门结构:LSTM 包含三个门结构:输入门、遗忘门和输出门。这些门决定了信息如何进入、被存储或被遗忘,以及如何输出。

(a2)记忆细胞:LSTM的核心是称为记忆细胞的结构。它可以保留、修改或访问的内部状态。通过门结构,模型可以学会在记忆细胞中何时存储、忘记或检索信息。

(a3)长期依赖问题:LSTM特别擅长学习、存储和使用长期信息,从而避免了传统RNN在长序列上的梯度消失问题。

(b)为什么LSTM适合时间序列建模:

(b1)序列数据的特性:时间序列数据具有顺序性,先前的数据点可能会影响后面的数据点。LSTM设计之初就是为了处理带有时间间隔、延迟和长期依赖关系的序列数据。

(b2)长期依赖:在时间序列分析中,某个事件可能会受到很早之前事件的影响。传统的RNNs由于梯度消失的问题,很难捕捉这些长期依赖关系。但是,LSTM结构可以有效地处理这种依赖关系。

(b3)记忆细胞:对于时间序列预测,能够记住过去的信息是至关重要的。LSTM的记忆细胞可以为模型提供这种存储和检索长期信息的能力。

(b4)灵活性:LSTM模型可以与其他神经网络结构(如CNN)结合,用于更复杂的时间序列任务,例如多变量时间序列或序列生成。

综上所述,由于LSTM的设计和特性,它非常适合时间序列建模,尤其是当数据具有长期依赖关系时。

(2)单步滚动预测

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras import layers, models, optimizers
from tensorflow.python.keras.optimizers import adam_v2# 读取数据
data = pd.read_csv('data.csv')# 将时间列转换为日期格式
data['time'] = pd.to_datetime(data['time'], format='%b-%y')# 创建滞后期特征
lag_period = 6
for i in range(lag_period, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)# 删除包含 NaN 的行
data = data.dropna().reset_index(drop=True)# 划分训练集和验证集
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 定义特征和目标变量
X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
y_train = train_data['incidence'].values
X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
y_validation = validation_data['incidence'].values# 对于LSTM,我们需要将输入数据重塑为 [samples, timesteps, features]
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)# 构建LSTM回归模型
input_layer = layers.Input(shape=(X_train.shape[1], 1))x = layers.LSTM(50, return_sequences=True)(input_layer)
x = layers.LSTM(25, return_sequences=False)(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(25, activation='relu')(x)
x = layers.Dropout(0.1)(x)
output_layer = layers.Dense(1)(x)model = models.Model(inputs=input_layer, outputs=output_layer)model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')# 训练模型
history = model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_validation, y_validation), verbose=0)# 单步滚动预测函数
def rolling_forecast(model, initial_features, n_forecasts):forecasts = []current_features = initial_features.copy()for i in range(n_forecasts):# 使用当前的特征进行预测forecast = model.predict(current_features.reshape(1, len(current_features), 1)).flatten()[0]forecasts.append(forecast)# 更新特征,用新的预测值替换最旧的特征current_features = np.roll(current_features, shift=-1)current_features[-1] = forecastreturn np.array(forecasts)# 使用训练集的最后6个数据点作为初始特征
initial_features = X_train[-1].flatten()# 使用单步滚动预测方法预测验证集
y_validation_pred = rolling_forecast(model, initial_features, len(X_validation))# 计算训练集上的MAE, MAPE, MSE 和 RMSE
mae_train = mean_absolute_error(y_train, model.predict(X_train).flatten())
mape_train = np.mean(np.abs((y_train - model.predict(X_train).flatten()) / y_train))
mse_train = mean_squared_error(y_train, model.predict(X_train).flatten())
rmse_train = np.sqrt(mse_train)# 计算验证集上的MAE, MAPE, MSE 和 RMSE
mae_validation = mean_absolute_error(y_validation, y_validation_pred)
mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
mse_validation = mean_squared_error(y_validation, y_validation_pred)
rmse_validation = np.sqrt(mse_validation)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

看结果:

(3)多步滚动预测-vol. 1

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input, LSTM, Dense, Dropout, Flatten
from tensorflow.python.keras.optimizers import adam_v2# 读取数据
data = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')n = 6
m = 2# 创建滞后期特征
for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 准备训练数据
X_train = []
y_train = []for i in range(len(train_data) - n - m + 1):X_train.append(train_data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values)y_train.append(train_data.iloc[i+n:i+n+m]['incidence'].values)X_train = np.array(X_train)
y_train = np.array(y_train)
X_train = X_train.astype(np.float32)
y_train = y_train.astype(np.float32)# 构建LSTM模型
inputs = Input(shape=(n, 1))
x = LSTM(64, return_sequences=True)(inputs)
x = LSTM(32)(x)
x = Dense(50, activation='relu')(x)
x = Dropout(0.1)(x)
outputs = Dense(m)(x)model = Model(inputs=inputs, outputs=outputs)model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')# 训练模型
model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)def lstm_rolling_forecast(data, model, n, m):y_pred = []for i in range(len(data) - n):input_data = data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values.astype(np.float32).reshape(1, n, 1)pred = model.predict(input_data)y_pred.extend(pred[0])for i in range(1, m):for j in range(len(y_pred) - i):y_pred[j+i] = (y_pred[j+i] + y_pred[j]) / 2return np.array(y_pred)# Predict for train_data and validation_data
y_train_pred_lstm = lstm_rolling_forecast(train_data, model, n, m)[:len(y_train)]
y_validation_pred_lstm = lstm_rolling_forecast(validation_data, model, n, m)[:len(validation_data) - n]# Calculate performance metrics for train_data
mae_train = mean_absolute_error(train_data['incidence'].values[n:len(y_train_pred_lstm)+n], y_train_pred_lstm)
mape_train = np.mean(np.abs((train_data['incidence'].values[n:len(y_train_pred_lstm)+n] - y_train_pred_lstm) / train_data['incidence'].values[n:len(y_train_pred_lstm)+n]))
mse_train = mean_squared_error(train_data['incidence'].values[n:len(y_train_pred_lstm)+n], y_train_pred_lstm)
rmse_train = np.sqrt(mse_train)# Calculate performance metrics for validation_data
mae_validation = mean_absolute_error(validation_data['incidence'].values[n:len(y_validation_pred_lstm)+n], y_validation_pred_lstm)
mape_validation = np.mean(np.abs((validation_data['incidence'].values[n:len(y_validation_pred_lstm)+n] - y_validation_pred_lstm) / validation_data['incidence'].values[n:len(y_validation_pred_lstm)+n]))
mse_validation = mean_squared_error(validation_data['incidence'].values[n:len(y_validation_pred_lstm)+n], y_validation_pred_lstm)
rmse_validation = np.sqrt(mse_validation)print("训练集:", mae_train, mape_train, mse_train, rmse_train)
print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)

结果:

(4)多步滚动预测-vol. 2

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential, Model
from tensorflow.python.keras.layers import Dense, LSTM, Input
from tensorflow.python.keras.optimizers import adam_v2# Loading and preprocessing the data
data = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')n = 6
m = 2# 创建滞后期特征
for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 只对X_train、y_train、X_validation取奇数行
X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)y_train_list = [train_data['incidence'].shift(-i) for i in range(m)]
y_train = pd.concat(y_train_list, axis=1)
y_train.columns = [f'target_{i+1}' for i in range(m)]
y_train = y_train.iloc[::2].reset_index(drop=True).dropna().values[:, 0]X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)y_validation = validation_data['incidence'].values# Building the LSTM model
inputs = Input(shape=(n, 1))
x = LSTM(50, activation='relu')(inputs)
x = Dense(50, activation='relu')(x)
outputs = Dense(1)(x)model = Model(inputs=inputs, outputs=outputs)
optimizer = adam_v2.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss='mse')# Train the model
model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)# Predict on validation set
y_validation_pred = model.predict(X_validation).flatten()# Compute metrics for validation set
mae_validation = mean_absolute_error(y_validation[:len(y_validation_pred)], y_validation_pred)
mape_validation = np.mean(np.abs((y_validation[:len(y_validation_pred)] - y_validation_pred) / y_validation[:len(y_validation_pred)]))
mse_validation = mean_squared_error(y_validation[:len(y_validation_pred)], y_validation_pred)
rmse_validation = np.sqrt(mse_validation)# Predict on training set
y_train_pred = model.predict(X_train).flatten()# Compute metrics for training set
mae_train = mean_absolute_error(y_train, y_train_pred)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

结果:

(5)多步滚动预测-vol. 3

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential, Model
from tensorflow.python.keras.layers import Dense, LSTM, Input
from tensorflow.python.keras.optimizers import adam_v2# 数据读取和预处理
data = pd.read_csv('data.csv')
data_y = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')
data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')n = 6for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
m = 3X_train_list = []
y_train_list = []for i in range(m):X_temp = X_trainy_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]X_train_list.append(X_temp)y_train_list.append(y_temp)for i in range(m):X_train_list[i] = X_train_list[i].iloc[:-(m-1)].valuesX_train_list[i] = X_train_list[i].reshape(X_train_list[i].shape[0], X_train_list[i].shape[1], 1)y_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])].values# 模型训练
models = []
for i in range(m):# Building the LSTM modelinputs = Input(shape=(n, 1))x = LSTM(50, activation='relu')(inputs)x = Dense(50, activation='relu')(x)outputs = Dense(1)(x)model = Model(inputs=inputs, outputs=outputs)optimizer = adam_v2.Adam(learning_rate=0.001)model.compile(optimizer=optimizer, loss='mse')model.fit(X_train_list[i], y_train_list[i], epochs=200, batch_size=32, verbose=0)models.append(model)validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
validation_data = data[data['time'] >= validation_start_time]
X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].values
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)y_validation_pred_list = [model.predict(X_validation) for model in models]
y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(models)]def concatenate_predictions(pred_list):concatenated = []for j in range(len(pred_list[0])):for i in range(m):concatenated.append(pred_list[i][j])return concatenatedy_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]
y_validation_pred = y_validation_pred.flatten()
y_train_pred = y_train_pred.flatten()mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
rmse_validation = np.sqrt(mse_validation)mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
rmse_train = np.sqrt(mse_train)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

结果:

三、数据

链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n

提取码:q41n

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114161.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Compose Desktop 使用中的几个问题(分平台加载资源、编写Gradle 任务下载平台资源、桌面特有组件、鼠标键盘事件)

前言 在我之前的文章 Compose For Desktop 实践&#xff1a;使用 Compose-jb 做一个时间水印助手 中&#xff0c;我们使用 Compose For Desktop 写了一个用于读取照片 EXIF 中的拍摄日期参数并以文字水印的方式添加到照片上的桌面程序。 但是事实上&#xff0c;这个程序的名字…

从入门到进阶 之 ElasticSearch SpringData 继承篇

&#x1f339; 以上分享 从入门到进阶 之 ElasticSearch SpringData 继承篇&#xff0c;如有问题请指教写。&#x1f339;&#x1f339; 如你对技术也感兴趣&#xff0c;欢迎交流。&#x1f339;&#x1f339;&#x1f339; 如有需要&#xff0c;请&#x1f44d;点赞&#x1f…

PHP数据加密传输和存储问题

PHP数据加密的类型 md5()&#xff0c;sha1()&#xff0c;crypt() 双md5加密加盐

AAPCS:最新的ARM子程序调用规则

AAPCS是arm公司发布的ARM架构应用程序二进制&#xff08;ABI&#xff09;程序调用接口&#xff0c;该文档由多个版本&#xff0c;博主第一次ARM程序调用规则是在《ARM体系与结构编程》&#xff0c;但书中描述的是ATPCS&#xff0c;AAPCS是ATPCS的升级版。后面去ARM官网看到了AA…

自然语言处理基础——词表示

词表示 把自然语言中最基本的语言单元——词转换为机器能够理解的 词表示能完成以下两个能力 词相似度计算 词与词之间语义的关系 近义词&上位词 使用近义词或上位词表示的问题 遗漏差异 遗漏新的释义 带有主观性 数据吸收 需要大量人工构建 One-Hot Representation …

Kafka学习(最新版3.6.0)

文章目录 一、初识MQ1.1 什么是MQ1.2 同步和异步通讯1.1.1 同步通讯1.1.2 异步通讯 1.3 技术对比1.4 MQ的两种模式 二、初识Kafka2.1 Kafka的使用场景2.2 Kafka基本概念2.3 Topic与Partition 三、Kafka基本使用3.1 部署前的准备3.2 启动kafka服务器3.3 Kafka核心概念之Topic3.4…

059:mapboxGL监听键盘事件,通过eastTo控制左右旋转

第059个 点击查看专栏目录 本示例是介绍演示如何在vue+mapbox中监听键盘事件,通过eastTo控制左右旋转。 本例通过easeTo方法来加减一定数值的bearing角度,通过.addEventListener的方法来监听键盘的按键动作。这里一定要设置interactive: false, 否则展现不出来旋转效果。 直…

机械设备经营小程序商城的作用是什么

由于机械设备厂商品牌需要各地招商代理&#xff0c;因此在管理方面也需要工具进行高效管理。如今各个行业都在开展数字化转型解决行业所遇难题或通过线上销售解决传统三公里难题及品牌扩张难题、用户消费渠道少等难题&#xff0c;构建会员体系精细化管理&#xff0c;同时还需要…

MySQL 主从复制原理

文章目录 1.主从复制方式1.1 异步复制1.2 半同步复制1.3 全同步复制 2.主从复制原理3.主从复制时推还是拉&#xff1f;参考文献 主从复制是 MySQL 高可用&#xff08;备份&#xff09;和高性能&#xff08;读写分离&#xff09;的基础&#xff0c;有了这个基础&#xff0c;MySQ…

【Ascend C算子开发(入门)】——Ascend C编程模式与范式

Ascend C编程模型与范式 1.并行计算架构抽象 Ascend C编程开发的算子是运行在AI Core上的&#xff0c;所以我们需要了解一下AI Core的结构。AI Core主要包括计算单元、存储单元、搬运单元。 计算单元包括了三种计算资源&#xff1a;Scalar计算单元&#xff08;执行标量计算&…

外骨骼机器人和人形机器人概览

前言&#xff1a;一点思考 外骨骼机器人和人形机器人都曾随着一些爆品的出现火热过一段时间&#xff0c;但总感觉当前技术条件还不成熟&#xff0c;真正能落地的应用场景不多。马斯克在擎天柱发布会上被问到人形机器人的落地与前景问题时并没有给出明确答案&#xff0c;只是用…

c++ pcl点云变换骨架枝干添加树叶源码实例

程序示例精选 c pcl点云变换骨架枝干添加树叶源码实例 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《c pcl点云变换骨架枝干添加树叶源码实例》编写代码&#xff0c;代码整洁&#xff0c;…

自然语言处理---Tr ansformer机制详解之Transformer结构

1 Encoder模块 1.1 Encoder模块的结构和作用 经典的Transformer结构中的Encoder模块包含6个Encoder Block.每个Encoder Block包含一个多头自注意力层&#xff0c;和一个前馈全连接层. 1.2 Encoder Block 在Transformer架构中&#xff0c;6个一模一样的Encoder …

【JavaScript】深入浅出理解事件循环

1. 浏览器的进程模型 1.1 进程 程序运行需要有它自己专属的内存空间&#xff0c;可以把这块内存空间简单的理解为进程。 每个应用至少有一个进程&#xff0c;进程之间相互独立&#xff0c;即使要通信&#xff0c;也需要双方同意。 1.2 线程 有了进程后&#xff0c;就可以运…

【广州华锐互动】VR营销心理学情景模拟培训系统介绍

在高度竞争的汽车市场中&#xff0c;销售人员需要具备强大的专业知识、引人入胜的销售技巧&#xff0c;以及敏锐的市场洞察力。然而&#xff0c;传统的培训方式往往无法满足这些需求&#xff0c;因为它们往往忽略了实践的重要性。 为了解决这个问题&#xff0c;许多公司开始采用…

TCP/IP(十九)TCP 实战抓包分析(三)TCP 第一次握手 SYN 丢包

一 TCP 三次握手异常情况实战分析 说明&#xff1a; 本文是TCP 三次握手异常系列之一 ① 异常场景 接下里我用三个实验案例,带大家一起探究探究这三种异常关注&#xff1a; 如何刻意练习模拟上述场景 以及 wireshark现象 ② 实验环境 ③ 实验一&#xff1a;TCP 第一次握…

Python —— UI自动化之使用JavaScript进行元素点亮、修改、点击元素

1、JavaScript点亮元素 在控制台通过JavaScript语言中对元素点亮效果如下&#xff1a; 将这个语句和UI自动化结合&#xff0c;代码如下&#xff1a; locator (By.ID,"kw") # 是元组类型 web_element WebDriverWait(driver,5,0.5).until(EC.visibility_of_eleme…

Arduino驱动BMA220三轴加速度传感器(惯性测量传感器篇)

目录 1、传感器特性 2、硬件原理图 3、驱动程序 BMA220的三轴加速度计是一款具有I2C接口的超小型三轴低g加速度传感器断路器,面向低功耗消费市场应用。它可以测量3个垂直轴的加速度,从而在手机、手持设备、计算机外围设备、人机界面、虚拟现实功能和游戏控制器中感知倾斜、…

王道计算机考研 操作系统学习笔记 + 完整思维导图篇章五: IO管理

目录 IO设备的基本概念和分类 IO设备的分类 按使用特性分类 按传输速率分类 按信息交换单位分类 IO控制器 l/O设备的电子部件&#xff08;I/O控制器&#xff09; l/O控制器的组成 内存映像I/o vs.寄存器独立编址 IO控制方式 程序直接控制方式 中断驱动方式 DMA方式 ​编辑通…

java1.8流的新特性使用

案例描述 今天跟着黑马程序员的视频&#xff0c;完成“瑞吉外卖”项目的菜品信息管理模块的时候&#xff0c;遇到了一个比较陌生的写法 用到了Java8的新特性 stream().map((item) -> {}).collect() List<DishDto> collect records.stream().map((item) -> {DishDt…