PixMIM论文笔记

论文名称:PixMIM: Rethinking Pixel Reconstruction in Masked Image Modeling
发表时间:2023 年 3 月 4 日
作者及组织:上海人工智能实验室、西蒙菲莎大学、香港中文大学
GitHub:https://github.com/open-mmlab/mmselfsup/tree/dev-1.x/configs/selfsup/pixmim

问题与贡献

在MIM(Maksed Image Modeling)任务中,随着Maked Autoencoders(MAE)和BEiT的提出,已经取得很大进步。但是,后续的工作研究要么通过添加新的辅助任务或者额外预训练模型,造成了框架的复杂性,并且引入了额外的计算成本。
本文从pixel重建的角度对MIM进行了详尽的分析,研究了输入图像patchs和重构目标,揭示了两个重要但是之前被忽视的难点bottlenecks。基于上述的分析,本文提出了一个简单且有效的方法,PixMIM,主要包含如下两个策略:

  • filtering the high-frequency components from the reconstruction target to de-emphasize the network’s focus on texture-rich details
  • 从重构目标中过滤高频分量,来弱化网络对纹理丰富细节的关注
  • adopting a conservative data transform strategy to alleviate the problem of missing foreground in MIM training.
  • 采用保守的数据转换策略来缓解MIM训练中前景丢失的问题

PixMIM可以简单嵌入到pixel-based MIM方法中,其增加的计算成本可以忽略不计。
本文通过对MAE算法进行详尽的分析,揭示两个重要问题:

  • 重建目标

现阶段,大多数MIM方法与MAE一样,将原始的像素值作为重建目标,这使得网络需要对masked patchs有优秀的重建能力,包括复杂的细节纹理。这种重建目标使得网络浪费建模能力来关注短期依赖和高频细节。而本文认为在 MIM 任务中,模型应该更关注浅层特征,即形状偏置。
image.png

  • 输入patchs

MAE中使用Random Resized Crop作为数据增强手段,但是,当结合RRC和高掩码率技巧时,MAE输入的patchs平均只占整体目标的17.1%。语义丰富的前景对于模型学习到好的特征是至关重要的。在训练过程中,较低的前景模型收敛会阻碍模型学习形状偏差。
image.png

前置概念和理论

MAE and most pixel-based MIM methods enforce the model to reconstruct intricate details of raw images. These complicated details contain textures with repeated patterns and belong to the high-frequency components in the frequency domain, which are usually independent of object shapes or scene structures.

vision models with stronger shape biases behave more like human visual perception, demonstrating better robustness and performing better when transferred to downstream tasks than those with stronger texture biases.

现在的MIM模型的重建目标,不可避免地会引入texture biases,偏离了之前工作地初衷,可能损害representation质量。与之对应的是,模型应该在重建目标中弱化high-frequency分量
如下图所示,作者为了评估MIM算法中输入patchs中包含目标的百分比,提出了以下的重叠面积计算公式。图中A1为原图中目标的区域,A2为裁剪后图像中目标的区域,A2和A1的比值可以得出占比。
image.png
作者发现,在MAE算法中,当使用RRC数据增强后,比值为68.3%,RRC结合掩码之后,占比只有17.1%,说明MAE的输入中缺乏有效的前景信息。如DeiT Ⅲ中提出的:前景相对于背景能编码更多语义信息,缺乏前景信息会导致在下游任务中优化欠佳。因此,需要一个简单的方法来保留更多的前景信息

模型、理论和方法

针对MAE,或者MIM系列算法中,存在的两个问题,提出了两个解决方案:

  • 生成low-frequency重建目标
  • 使用更加保守的数据增强方法替代RR

image.png

生成Low-frequency重建目标

为了削弱模型学习到texture为主导的high-frequency细节信息,提出了一个新的目标生成器decoder,生成的目标依旧是RGB像素值,但是过滤掉了high-frequency分量。
具体而言,生成low-frequency目标分为如下三步:

  1. domain conversion from spatial to frequency(空间域到频率域的转换);

对于输入的图像,使用2D的离散傅里叶变换,将内容从空间域转换到频域,公式如下:
F D F T ( I i ) ( u , v ) = ∑ h = 0 H − 1 ∑ w = 0 W − 1 I i ( h , w ) e − i 2 π ( u h H + v w W ) F_{DFT}(I_i)(u,v)=\sum_{h=0}^{H-1}\sum_{w=0}^{W-1}I_i(h, w)e^{-i2\pi(\frac{uh}{H}+\frac{vw}{W})} FDFT(Ii)(u,v)=h=0H1w=0W1Ii(h,w)ei2π(Huh+Wvw)

  1. low-frequency components extraction(低频成分提取);

为了只获取图像的低频信息,使用如下公式对图像的频域。

  1. reconstruction target generation from frequency domain(频域重建目标生成).

更加保守的数据增强方案

为了更好的保留输入前景信息,没有修改高掩码方式,而是提出了一个更加保守的数据增强方案。
image.png
Simple Resized Crop(SRC),最先在AlexNet中被使用,具体做法是先讲最短边resize到输入大小,然后在两侧应用 4 像素的反射填充,最后随机裁剪一个输入大小的区域。
CenterCrop(CC),就是从图像中间裁剪一个固定大小的区域。
最后可以看到SRC的前景占比为22.1%,非常接近25%(掩码率为75%)。

实验与结论

方法应用

将PixMIM应用到MAE、ConvMAE和LSMAE上,比较它们之间的结果。在linear probe、object detection和semantic segmentation上取得了极佳的效果。
image.png
此外,为了更好可视化地查看模型之间的差异,对不同epoch下模型的性能进行了绘图,可以看到PixMIM的曲线都在原方法之上。
image.png

鲁棒性评估

通过在ImageNet的变体:ImageNet-Corruption,ImageNet-Adversarial,ImageNet-Rendition和ImageNet-Sketch上的测试结果来评估预训练模型的鲁棒性,因为这些数据集相对于ImageNet都引入了domain shifts。
image.png

形状偏差分析

image.png

消融实验

过滤高频分量

低频带宽 r r r对于结果的影响,可以看到,当bandwidth为40时,PixMIM相对于baseline在linear probe和segmentic上分别提升了1.2%和1.7%。较小的bandwidth会抛弃到图像中比较重要的信息,而较大的bandwidth无法有效地移除不重要地texture。
image.png

使用SRC

下图比较了不同数据增强方式下模型的表现。在MAE上,SRC相对于RRC在linear probe和semantic上都取得较好的提升。然而,在DeiTⅢ上,用 SRC 替换 RRC 会降低性能,因为它会降低裁剪图像的多样性并削弱模型的泛化能力。
在MIM,RRC会导致前景的丢失,通过后续CC(centercrop)的实验可以进一步验证这个结论。
image.png
下图展示了PixMIM中两个组件一起之后的效果。
image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108529.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

transformer_01

一、传统RNN存在的问题 1.序列前序太长,每个xi要记住前面的特征,而且一直在学,没有忘记,可能特征不能学的太好 2.串行,层越多越慢,难以堆叠很多层; 3.只能看到过去,不能看到未来 搞…

什么是NetApp的DQP和如何安装DQP?

首先看看什么是DQP,DQPDisk Qualification Package,文字翻译就是磁盘验证包。按照NetApp的最佳实践,要定期升级DQP包,保证对最新磁盘和磁盘扩展柜的兼容。 本文主要介绍7-mode下如何升级DQP,至于cluster mode另外文章…

Linux Zabbix企业级监控平台+cpolar实现远程访问

文章目录 前言1. Linux 局域网访问Zabbix2. Linux 安装cpolar3. 配置Zabbix公网访问地址4. 公网远程访问Zabbix5. 固定Zabbix公网地址 前言 Zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。能监视各种网络参数,保证服务器系…

基于边缘网关构建水污染监测治理方案

绿水青山就是金山银山,生态环境才是人类最宝贵的财富。但是在日常生活生产中,总是免不了各种污水的生产、排放。针对生产生活与环境保护的均衡,可以借助边缘网关打造环境污水监测治理体系,保障生活与环境的可持续性均衡发展。 水污…

NewStarCTF2023week2-Upload again!

尝试传修改后缀的普通一句话木马&#xff0c;被检测 尝试传配置文件 .htaccess 和 .user.ini 两个都传成功了 接下来继续传入经过修改的木马 GIF89a <script language"php"> eval($_POST[cmd]); </script> 没有被检测&#xff0c;成功绕过 直接上蚁剑…

微查系统,一站式查询,让您的查询更加便捷

微查系统是挖数据一款功能强大的查询系统&#xff0c;是一个集多种查询和核验工具于一身的综合性平台。它可以大大简化企业和个人的查询流程&#xff0c;节省时间和成本&#xff0c;提高查询的准确性和效率。本文将介绍微查系统的主要特点&#xff0c;功能和使用方法&#xff0…

C++数据结构X篇_15_求二叉树叶子数与高度(递归方法)

本篇参考求二叉树叶子数与高度&#xff08;C&#xff09;进行整理。 文章目录 1. 二叉树中叶子数与高度2. 求二叉树叶子数与高度的实现代码 1. 二叉树中叶子数与高度 我们首先来看一看二叉树中叶子数与高度的定义&#xff1a; 叶子数&#xff1a;对于一个二叉树的节点&#x…

新型的终端复用器 tmux

以前遇到长时间执行任务时&#xff0c;一般是使用nohup加后台运行&#xff0c;但是涉及到少量代码编写。 同事介绍了一个screen命令&#xff0c;根据文档&#xff0c;此命令已经过时&#xff0c;最新的命令是tmux。 tmux的介绍文档&#xff0c;RedHat的这一篇非常不错。 在文…

图详解第四篇:单源最短路径--Dijkstra算法

文章目录 1. 最短路径问题2. 单源最短路径--Dijkstra算法算法思想图解如何存储路径及其权值代码实现调式观察打印最短路径Dijkstra算法的缺陷 3. 源码 1. 最短路径问题 最短路径问题&#xff1a; 从带权有向图&#xff08;求最短路径通常是有向图&#xff09;G中的某一顶点出发…

linux下的rsync(文件同步) 用法教程

一、简介 rsync 是一个常用的 Linux 应用程序&#xff0c;用于文件同步。 它可以在本地计算机与远程计算机之间&#xff0c;或者两个本地目录之间同步文件&#xff08;但不支持两台远程计算机之间的同步&#xff09;。它也可以当作文件复制工具&#xff0c;替代cp和mv命令。 …

BIO实战、NIO编程与直接内存、零拷贝深入剖析

原生 JDK 网络编程 BIO BIO&#xff0c;意为 Blocking I/O&#xff0c;即阻塞的 I/O。   BIO 基本上就是我们上面所说的生活场景的朴素实现。在 BIO 中类 ServerSocket 负责绑定 IP 地址&#xff0c;启动监听端口&#xff0c;等待客户连接&#xff1b;客户端 Socket 类的实例…

SpringMVC源码分析(三)HandlerExceptionResolver启动和异常处理源码分析

问题&#xff1a;异常处理器在SpringMVC中是如何进行初始化以及使用的&#xff1f; Spring MVC提供处理异常的方式主要分为两种&#xff1a; 1、实现HandlerExceptionResolver方式&#xff08;HandlerExceptionResolver是一个接口&#xff0c;在SpringMVC有一些默认的实现也可以…

【算法练习Day22】 组合总和 III电话号码的字母组合

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 组合总和 III剪枝 电话号码…

node 通过axios发送post请求(FormData)

方案一&#xff1a; const axios require(axios) const FormData require(form-data) const fs require(fs)const sdUpscaleOnAzure async (req, res) > {const data new FormData()data.append(image, fs.readFileSync(/temp/ai/sd/download/1.png))let config {hea…

R/d2及S/C4估计总体标准差,比较其CPK及规格限概率的差异

R/d2 和 S/C4 是用于估计总体标准差的无偏估计方法&#xff0c;通常用于控制图中。这些估计方法的主要目的是通过样本数据来估计总体标准差&#xff0c;以便监测过程的稳定性和变异性&#xff0c;而不需要收集整个总体的数据。 具体来说&#xff1a; R图中的 R/d2 和 S图中的…

gitlab自编译 源码下载

网上都是怎么用 gitlab&#xff0c;但是实际开发中有需要针对 gitlab 进行二次编译自定义实现功能的想法。 搜索了网上的资料以及在官网的查找&#xff0c;查到了如下 gitlab 使用 ruby 开发。 gitlab 下载包 gitlab/gitlab-ce - Packages packages.gitlab.com gitlab/gitl…

本地搭建渲染农场和云渲染农场哪个更推荐?看完帮你省下几个w

&#xfeff; 渲染农场是由众多机器组成的渲染集群&#xff0c;主要用于渲染单帧效果图或动画项目。凭借渲染农场的强大计算能力&#xff0c;设计师能够满足3D项目紧迫的交期要求。最近&#xff0c;小编注意到许多设计师对以下问题产生了疑惑&#xff1a; 是否可以自行搭建渲…

MySQL查询优化看一篇就够了

关联查询优化 数据准备 #分类 CREATE TABLE IF NOT EXISTS type( id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, card INT(10) UNSIGNED NOT NULL, PRIMARY KEY ( id ) );#图书 CREATE TABLE IF NOT EXISTS book(bookid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,cardINT(10…

fatal:Could not read from remote repository解决方法

Linux服务器如何连接GitHub&#xff1f; 生成SSH密钥 ssh-keygen -C “邮箱” -t rsa 存放位置一般是/root/.ssh/id_rsa 登录个人github&#xff0c;添加客户端生成的公钥 打开Settings&#xff0c;点击SSH and GPG keys&#xff0c;点击New SSH Key。Key中粘贴id_rsa.pub…

以太网UDP数据回环实验

一、TCP/IP协议簇 前面说到TCP/IP是一个协议簇&#xff0c;其中包含有IP协议、TCP协议、UDP协议、ARP协议、DNS协议、FTP协议等。设备之间要想完成通信&#xff0c;就必须通过这些网络通信协议。 物理层的主要作用就是传输比特流&#xff08;将1、0转化为电流强弱来进行传输&am…