HSN:微调预训练ViT用于目标检测和语义分割,华南理工和阿里巴巴联合提出

今天跟大家分享华南理工大学和阿里巴巴联合提出的将ViT模型用于下游任务的高效微调方法HSN,该方法在迁移学习、目标检测、实例分割、语义分割等多个下游任务中表现优秀,性能接近甚至在某些任务上超越全参数微调。

  • 论文标题:Hierarchical Side Tuning for Vision Transformers
  • 机构:华南理工大学、阿里巴巴
  • 论文地址:https://arxiv.org/pdf/2310.05393.pdf
  • 代码地址(即将开源):https://github.com/AFeng-x/HST#hierarchical-side-tuning-for-vision-transformers
  • 关键词:Vision Transformer、迁移学习、目标检测、实例分割、语义分割

1.动机

近年来,大规模的Vision Transformer(简称ViT)在多个任务中表现优秀,很多研究人员尝试利用ViT中的预训练知识提升下游任务的性能。然而,快速增长的模型规模使得在开发下游任务时直接微调预训练模型变得不切实际。 Parameter-efficient transfer learning(简称PETL)方法通过选择预训练模型的参数子集或在主干中引入有限数量的可学习参数,同时保持大部分原始参数不变,来解决该问题。

尽管PETL方法取得了重大成功,但主要是为识别任务而设计的。当将其用于密集预测任务时(比如目标检测和分割),与完全的微调相比其性能仍有很大的差距,这可能是由于密集预测任务与分类任务有本质上的不同。为了解决这一性能差距,作者提出了一种更通用的PETL方法Hierarchical Side-Tuning(简称HST),作者构建了Hierarchical Side Network(简称HSN),能产生金字塔式的多尺度输出,使得整个模型能适应不同的任务。

2.Hierarchical Side-Tuning(HST)

2.1 HST总体结构

HST的总体结构如下图所示:

上图中蓝色部分为普通的ViT,其权重被冻结;绿色部分为Adaptive Feature Bridge(简称AFB),用于桥接和预处理中间特征;粉色部分是Hierarchical Side Network(简称HSN),由1个Conv Stem和 L L L个Side Block组成。

对于ViT部分,输入图像首先通过patch embedding,然后进入 L L L个Transformer encoder;对于HSN部分,输入图像通过Conv Stem,从输入图像中引入局部空间上下文信息。HSN由4个stage组成,下采样率分别为 { 4 , 8 , 16 , 32 } \{4,8,16,32\} {4,8,16,32},输出4种不同尺度的特征。每个Transformer encoder都有1个对应的Side Block,信息流从backbone流向Side Block。

2.2 Meta Token

与其他prompt-based的微调方法不同,作者令prompt的数量为1,并将其称作Meta Token(简称MetaT),其结构如下图所示:

作者并没有丢弃prompt对应的输出特征,而是将其与输出的patch token一起作为Adaptive Feature Bridge的输入。由于MetaT的输出特征分布与patch token的分布有差异,这会影响HSN的性能,因此要微调Transformer中的Layer Normalization(简称LN)层,以改变特征的均值和方差(即改变了特征分布),有助于保持同一样本中不同特征之间的相对值。下图展示了MetaT的输出特征与ViT中patch token之间的余弦相似度,显然,通过微调LN层,MetaT的输出与patch token的向量方向能更好地对齐,从而有效地利用MetaT的输出特征。

2.3 Adaptive Feature Bridge(AFB)

由于ViT的输出特征与HSN中的特征形状不同,因此引入了Adaptive Feature Bridge(AFB),AFB包括2个重要部分:双分支分离(Dual-Branch Separation)和权重共享(Linear Weight Sharing),如下图所示:

Dual-Branch Separation

MetaT的输出和patch token先经过线性层进行维度变换,线性层的输出分为2个分支,patch token进行全局平均池化输出1个token,将其称作GlobalT,GlobalT与MetaT拼接得到 F m g i \mathcal{F}_{m g}^i Fmgi。通过双线性差值改变patch token的形状,使其与HSN中对应stage的特征形状一致。整体流程表示如下:

F m g i = [ W j F MetaT  i , AvgPooling ⁡ ( W j F patch  i ) ] ; F f g i = T ( W j F v i t i ) \mathcal{F}_{m g}^i=\left[W_j \mathcal{F}_{\text {MetaT }}^i, \operatorname{AvgPooling}\left(W_j \mathcal{F}_{\text {patch }}^i\right)\right] ; \mathcal{F}_{f g}^i=\mathcal{T}\left(W_j \mathcal{F}_{v i t}^i\right) Fmgi=[WjFMetaT i,AvgPooling(WjFpatch i)];Ffgi=T(WjFviti)

上式中 i i i表示第 i i i个Vit block, W j W_j Wj表示第 j j j个stage中线性层的权重矩阵。

Linear Weight Sharing

同一个stage中的多个AFB共享线性层权重,以减少可学习参数;此外,这样能在同一个stage中实现特征间的信息交互,达到与使用多个线性层相当的效果。

2.4 Side Block

Side Block包含1个cross-attention层和1个Feed-Forward Network(简称FFN),其结构如下图所示。

Side Block对ViT的中间特征和多尺度特征进行建模,考虑到这两个输入分支的特点,作者通过不同的方法将它们引入到Side Block中。

Meta-Global Injection

将HSN输出的多尺度特征作为Query(记作 Q Q Q),使用meta-global token作为key(记作 K K K)和value(记作 V V V),cross-attention表示如下:

( ( Q h s n ) ( K m g ) T ) V m g = A V m g \left(\left(Q_{h s n}\right)\left(K_{m g}\right)^T\right) V_{m g}=A V_{m g} ((Qhsn)(Kmg)T)Vmg=AVmg

上式中 Q h s n ∈ R L × d Q_{h s n} \in \mathbb{R}^{L \times d} QhsnRL×d ( K m g ) T ∈ R d × M \left(K_{m g}\right)^T \in \mathbb{R}^{d \times M} (Kmg)TRd×M V m g ∈ R M × d V_{m g} \in \mathbb{R}^{M \times d} VmgRM×d L L L表示多尺度特征输入序列的长度, M M M表示meta-global token的长度, d d d表示特征维度。

将Meta-Global Injection的输出记作 F ^ h s n i \hat{F}_{h s n}^i F^hsni,可表示如下:

F ^ h s n i = F h s n i + CrossAttention ⁡ ( F h s n i , F m g i ) \hat{\mathcal{F}}_{h s n}^i=\mathcal{F}_{h s n}^i+\operatorname{CrossAttention}\left(\mathcal{F}_{h s n}^i, \mathcal{F}_{m g}^i\right) F^hsni=Fhsni+CrossAttention(Fhsni,Fmgi)

上式中 i i i表示HST和ViT的第 i i i个block。

Fine-Grained Injection

将Meta-Global Injection的输出 F ^ h s n i \hat{F}_{h s n}^i F^hsni F f g i F_{f g}^i Ffgi进行元素相加,然后使用FFN进行建模,表示如下:

F h s n i + 1 = F ^ h s n i + F f g i + FFN ⁡ ( F ^ h s n i + F f g i ) F_{h s n}^{i+1}=\hat{F}_{h s n}^i+F_{f g}^i+\operatorname{FFN}\left(\hat{F}_{h s n}^i+F_{f g}^i\right) Fhsni+1=F^hsni+Ffgi+FFN(F^hsni+Ffgi)

F h s n i + 1 F_{h s n}^{i+1} Fhsni+1作为下一个Side Block的输入。

3.实验

3.1 实验设置

3.2 实验结果

(1)图像分类

(2)目标检测和实例分割

(3)语义分割


更多消融实验及分析请查看原文。

4.总结

作者提出了一种新的参数高效的迁移学习方法Hierarchical Side-Tuning(HST),可训练的side network利用了backbone的中间特征,并生成了用于进行预测的多尺度特性。通过实验表明,HST在不同的数据集和任务中表现优异,显著地减少了在密集预测任务中PETL与完全微调的性能差距。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106132.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 微信小程序 vue3.0+TS手写自定义封装步骤条(setup)

uniapp手写自定义步骤条&#xff08;setup&#xff09; 话不多说 先上效果图&#xff1a; setup.vue组件代码&#xff1a; <template><view class"stepBox"><viewclass"stepitem"v-for"(item, index) in stepList":key"i…

Sprint framework Day07:注解结合 xml 配置

前言 Spring注解结合XML配置是指在Spring应用中&#xff0c;使用注解和XML配置的方式来进行Bean的定义、依赖注入和其他配置。这种方式可以充分利用Spring框架的注解和XML配置两种不同的配置方式的特点。 在Spring框架中&#xff0c;我们可以使用注解来定义Bean&#xff0c;如…

《动手学深度学习 Pytorch版》 8.5 循环神经网络的从零开始实现

%matplotlib inline import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 train_iter, vocab d2l.load_data_time_machine(batch_size, num_steps) # 仍然使用时间机器数据集8.…

VSCode自定义代码块详解

第一步&#xff1a;点击文件-首选项-用户代码片段 第二步&#xff1a;选择代码块作用域的文件类型 类型一&#xff1a;全局作用域 这种类型的代码块是创建在vscode软件内部的文件。是跟随这当前安装的vscode这个软件的&#xff0c;不会随着项目的关闭而失效&#xff0c;会一直存…

Gpt-4多模态功能强势上线,景联文科技多模态数据采集标注服务等您来体验!

就在上个月&#xff0c;OpenAI 宣布对ChatGPT 进行重大更新&#xff0c;该模型不仅能够通过文字输入进行识别和分析&#xff0c;还能够通过语音、图像甚至视频等多种模态的输入来获取、识别、分析和输出信息。这一重要技术突破&#xff0c;将促进多模态自然语言处理的发展&…

Android位置服务和应用权限

Github:https://github.com/MADMAX110/Odometer 一、使用位置服务 之前的Odometer应用是显示一个随机数&#xff0c;现在要使用Android的位置服务返回走过的距离。 修改getDiatance方法使其返回走过的距离&#xff0c;为此要用Android的位置服务。这些服务允许你得到用户的当…

巧用正则表达式

文章目录 题目巧用正则表达式&#xff0c;题目将十进制转为16进制&#xff0c;可以采用Java的语法来表示 题目 巧用正则表达式&#xff0c;题目将十进制转为16进制&#xff0c;可以采用Java的语法来表示 String nInteger.toString(num,16); 那如何确定是否都是字母呢a-f呢&…

车载多源融合定位

终端硬件由两部分组成&#xff0c;组合导航处理板和地磁导航处理板。 组合导航处理板负责采集加速度计、陀螺、GNSS和轮速计等数据进行组合导航解算&#xff0c;差分数据通过6Q主板获取到后通过串口发送至组合导航处理板。地磁导航处理板负责地磁数据采集&#xff0c;保存至数…

Rxjava3 全新详解及常用操作符

简介 RxJava 是一个基于 Java 的响应式编程库&#xff0c;用于处理异步事件流和数据流。它是由 Netflix 开发并开源&#xff0c;现在广泛用于 Android 和 Java 后端开发。RxJava 提供了一种用于组合和处理异步数据的丰富工具集&#xff0c;它的核心思想是将数据流视为一系列事…

微信发红包(各种红包类型)-测试用例设计

微信发红包&#xff08;各种红包类型&#xff09;

总结10.15

项目进展 登陆注册&#xff0c;连接了数据库&#xff0c;找回密码写到了通过给邮箱发送验证码&#xff0c;然后重新输入密码 项目看法 之后俩天加紧把这个登陆注册这些搞完&#xff0c;注册用到的随机生成一个账号且不重复&#xff0c;且设置一个邮箱作为之后找回密码时候的…

CVPR 2023 | 数据驱动的解释对分布外数据具有鲁棒性吗?

论文链接&#xff1a; https://arxiv.org/abs/2303.16390 代码链接&#xff1a; https://github.com/tangli-udel/DRE 01. 研究背景&#xff1a;数据驱动的解释对分布外数据具有鲁棒性吗&#xff1f; 近年来&#xff0c;将黑盒机器学习&#xff08;ML&#xff09;模型用于高风…

CentOS 7 编译安装Boost

1、前提条件 linux平台/CentOS 7 下要编译安装Boost除gcc和gcc-c之外&#xff0c;还需要两个开发库&#xff1a;bzip2-devel 和python-devel &#xff0c;因此在安装前应该先保证这两个库已经安装。 安装指令: yum install bzip2 bzip2-devel bzip2-libs python-devel Cent…

zookeeper源码学习笔记(一)

一、缘起 1、CP还是AP 作为一个在大数据行业工作了7&#xff5e;8年的老兵&#xff0c;在被问到zookeeper和CAP时&#xff0c;竟然有些恍惚&#xff0c;AP还是CP&#xff1f; 看了一些博文&#xff0c;答案几乎都是CP&#xff1f; zookeeper的实现中&#xff0c;P是一定的&…

低代码提速应用开发

低代码介绍 低代码平台是指一种能够帮助企业快速交付业务应用的平台。自2000年以来&#xff0c;低代码市场一直充斥着40大大小小的各种玩家&#xff0c;比如国外的Appian、K2、Pega Systems、Salesforce和Ultimus&#xff0c;国内的H3 BPM。 2015年以后&#xff0c;这个市场更是…

2023年厦门市高等职业院校技能竞赛软件测试竞赛规程

2023年厦门市高等职业院校技能竞赛 软件测试竞赛规程 一、赛项名称 赛项名称&#xff1a;软件测试 竞赛形式&#xff1a;团体赛 赛项专业大类&#xff1a;电子信息 二、竞赛目的 &#xff08;一&#xff09;检验教学成效 本赛项竞赛内容以《国家职业教育改革实施方案》为设计方…

Docker逃逸---procfs文件挂载

一、产生原因 将宿主机/proc目录挂载进了容器&#xff0c;而该目录内的/proc/sys/kernel/core_pattern文件是负责进程奔溃时内存数据转储的&#xff0c;当第一个字符是| 管道符时&#xff0c;后面的部分会以命令行的方式进行解析并运行&#xff0c;攻击者可以将恶意文件写入该…

【Python数据分析工具】

文章目录 概要整体架构流程技术名词解释 概要 数据分析是一种通过收集、处理、分析和解释大量数据&#xff0c;以发现有价值信息、洞察趋势、制定决策并解决问题的过程。在现代科技和互联网的推动下&#xff0c;数据分析变得日益重要。它不仅仅是对数字和图表的简单解释&#…

MacOS ventura跳过配置锁

Macbook pro 2021跳配置锁 1.什么是配置锁&#xff1f; 配置锁顾名思义就是美国一些企业和公司向苹果工公司定制采购的机器&#xff0c;这些机器一般供应内部员工使用&#xff0c;这种机器和正常机没有什么区别&#xff0c;也是无锁三网机器&#xff0c;功能和正常机器一摸一…

如何用精准测试来搞垮团队?

测试行业每年会冒出来一些新鲜词&#xff1a;混沌工程、精准测试、AI测试…… 这些新概念、新技术让我们感到很焦虑&#xff0c;逼着自己去学习和了解这些新玩意&#xff0c;担心哪一天被淘汰掉。 以至于给我这样的错觉&#xff0c;当「回归测试」、「精准测试」这两个词摆在一…