ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?

目录

疑问

编译、链接和装载:拆解程序执行

ELF 格式和链接:理解链接过程

小结


疑问

既然我们的程序最终都被变成了一条条机器码去执行,那为什么同一个程序,在同一台计算机上,在 Linux 下可以运行,而在 Windows 下却不行呢?反过来,Windows 上的程序在 Linux 上也是一样不能执行的。可是我们的 CPU 并没有换掉,它应该可以识别同样的指令呀?

如果你和我有同样的疑问,那这一节,我们就一起来解开。

编译、链接和装载:拆解程序执行

我们知道,写好的 C 语言代码,可以通过编译器编译成汇编代码,然后汇编代码再通过汇编器变成 CPU 可以理解的机器码,于是 CPU 就可以执行这些机器码了。你现在对这个过程应该不陌生了,但是这个描述把过程大大简化了。下面,我们一起具体来看,C 语言程序是如何变成一个可执行程序的。

我们先把前面的 add 函数示例,拆分成两个文件 add_lib.c 和 link_example.c。

// add_lib.c
int add(int a, int b)
{return a+b;
}
// link_example.c#include <stdio.h>
int main()
{int a = 10;int b = 5;int c = add(a, b);printf("c = %d\n", c);
}

我们通过 gcc 来编译这两个文件,然后通过 objdump 命令看看它们的汇编代码。

$ gcc -g -c add_lib.c link_example.c
$ objdump -d -M intel -S add_lib.o
$ objdump -d -M intel -S link_example.o
add_lib.o:     file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <add>:0:   55                      push   rbp1:   48 89 e5                mov    rbp,rsp4:   89 7d fc                mov    DWORD PTR [rbp-0x4],edi7:   89 75 f8                mov    DWORD PTR [rbp-0x8],esia:   8b 55 fc                mov    edx,DWORD PTR [rbp-0x4]d:   8b 45 f8                mov    eax,DWORD PTR [rbp-0x8]10:   01 d0                   add    eax,edx12:   5d                      pop    rbp13:   c3                      ret 
link_example.o:     file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <main>:0:   55                      push   rbp1:   48 89 e5                mov    rbp,rsp4:   48 83 ec 10             sub    rsp,0x108:   c7 45 fc 0a 00 00 00    mov    DWORD PTR [rbp-0x4],0xaf:   c7 45 f8 05 00 00 00    mov    DWORD PTR [rbp-0x8],0x516:   8b 55 f8                mov    edx,DWORD PTR [rbp-0x8]19:   8b 45 fc                mov    eax,DWORD PTR [rbp-0x4]1c:   89 d6                   mov    esi,edx1e:   89 c7                   mov    edi,eax20:   b8 00 00 00 00          mov    eax,0x025:   e8 00 00 00 00          call   2a <main+0x2a>2a:   89 45 f4                mov    DWORD PTR [rbp-0xc],eax2d:   8b 45 f4                mov    eax,DWORD PTR [rbp-0xc]30:   89 c6                   mov    esi,eax32:   48 8d 3d 00 00 00 00    lea    rdi,[rip+0x0]        # 39 <main+0x39>39:   b8 00 00 00 00          mov    eax,0x03e:   e8 00 00 00 00          call   43 <main+0x43>43:   b8 00 00 00 00          mov    eax,0x048:   c9                      leave  49:   c3                      ret 

既然代码已经被我们“编译”成了指令,我们不妨尝试运行一下 ./link_example.o。

不幸的是,文件没有执行权限,我们遇到一个 Permission denied 错误。即使通过 chmod 命令赋予 link_example.o 文件可执行的权限,运行./link_example.o 仍然只会得到一条 cannot execute binary file: Exec format error 的错误。

我们再仔细看一下 objdump 出来的两个文件的代码,会发现两个程序的地址都是从 0 开始的。如果地址是一样的,程序如果需要通过 call 指令调用函数的话,它怎么知道应该跳转到哪一个文件里呢?

这么说吧,无论是这里的运行报错,还是 objdump 出来的汇编代码里面的重复地址,都是因为 add_lib.o 以及 link_example.o 并不是一个可执行文件(Executable Program),而是目标文件(Object File)。只有通过链接器(Linker)把多个目标文件以及调用的各种函数库链接起来,我们才能得到一个可执行文件。

我们通过 gcc 的 -o 参数,可以生成对应的可执行文件,对应执行之后,就可以得到这个简单的加法调用函数的结果。

$ gcc -o link-example add_lib.o link_example.o
$ ./link_example
c = 15

实际上,“C 语言代码 - 汇编代码 - 机器码” 这个过程,在我们的计算机上进行的时候是由两部分组成的。

第一个部分由编译(Compile)、汇编(Assemble)以及链接(Link)三个阶段组成。在这三个阶段完成之后,我们就生成了一个可执行文件。

第二部分,我们通过装载器(Loader)把可执行文件装载(Load)到内存中。CPU 从内存中读取指令和数据,来开始真正执行程序。

ELF 格式和链接:理解链接过程

程序最终是通过装载器变成指令和数据的,所以其实我们生成的可执行代码也并不仅仅是一条条的指令。我们还是通过 objdump 指令,把可执行文件的内容拿出来看看。

link_example:     file format elf64-x86-64
Disassembly of section .init:
...
Disassembly of section .plt:
...
Disassembly of section .plt.got:
...
Disassembly of section .text:
...6b0:   55                      push   rbp6b1:   48 89 e5                mov    rbp,rsp6b4:   89 7d fc                mov    DWORD PTR [rbp-0x4],edi6b7:   89 75 f8                mov    DWORD PTR [rbp-0x8],esi6ba:   8b 55 fc                mov    edx,DWORD PTR [rbp-0x4]6bd:   8b 45 f8                mov    eax,DWORD PTR [rbp-0x8]6c0:   01 d0                   add    eax,edx6c2:   5d                      pop    rbp6c3:   c3                      ret    
00000000000006c4 <main>:6c4:   55                      push   rbp6c5:   48 89 e5                mov    rbp,rsp6c8:   48 83 ec 10             sub    rsp,0x106cc:   c7 45 fc 0a 00 00 00    mov    DWORD PTR [rbp-0x4],0xa6d3:   c7 45 f8 05 00 00 00    mov    DWORD PTR [rbp-0x8],0x56da:   8b 55 f8                mov    edx,DWORD PTR [rbp-0x8]6dd:   8b 45 fc                mov    eax,DWORD PTR [rbp-0x4]6e0:   89 d6                   mov    esi,edx6e2:   89 c7                   mov    edi,eax6e4:   b8 00 00 00 00          mov    eax,0x06e9:   e8 c2 ff ff ff          call   6b0 <add>6ee:   89 45 f4                mov    DWORD PTR [rbp-0xc],eax6f1:   8b 45 f4                mov    eax,DWORD PTR [rbp-0xc]6f4:   89 c6                   mov    esi,eax6f6:   48 8d 3d 97 00 00 00    lea    rdi,[rip+0x97]        # 794 <_IO_stdin_used+0x4>6fd:   b8 00 00 00 00          mov    eax,0x0702:   e8 59 fe ff ff          call   560 <printf@plt>707:   b8 00 00 00 00          mov    eax,0x070c:   c9                      leave  70d:   c3                      ret    70e:   66 90                   xchg   ax,ax
...
Disassembly of section .fini:
...

你会发现,可执行代码 dump 出来内容,和之前的目标代码长得差不多,但是长了很多。因为在 Linux 下,可执行文件和目标文件所使用的都是一种叫ELF(Execuatable and Linkable File Format)的文件格式,中文名字叫可执行与可链接文件格式,这里面不仅存放了编译成的汇编指令,还保留了很多别的数据。

比如我们过去所有 objdump 出来的代码里,你都可以看到对应的函数名称,像 add、main 等等,乃至你自己定义的全局可以访问的变量名称,都存放在这个 ELF 格式文件里。这些名字和它们对应的地址,在 ELF 文件里面,存储在一个叫作符号表(Symbols Table)的位置里。符号表相当于一个地址簿,把名字和地址关联了起来。

我们先只关注和我们的 add 以及 main 函数相关的部分。你会发现,这里面,main 函数里调用 add 的跳转地址,不再是下一条指令的地址了,而是 add 函数的入口地址了,这就是 EFL 格式和链接器的功劳。

ELF 文件格式把各种信息,分成一个一个的 Section 保存起来。ELF 有一个基本的文件头(File Header),用来表示这个文件的基本属性,比如是否是可执行文件,对应的 CPU、操作系统等等。除了这些基本属性之外,大部分程序还有这么一些 Section:

  1. 首先是.text Section,也叫作代码段或者指令段(Code Section),用来保存程序的代码和指令;

  2. 接着是.data Section,也叫作数据段(Data Section),用来保存程序里面设置好的初始化数据信息;

  3. 然后就是.rel.text Secion,叫作重定位表(Relocation Table)。重定位表里,保留的是当前的文件里面,哪些跳转地址其实是我们不知道的。比如上面的 link_example.o 里面,我们在 main 函数里面调用了 add 和 printf 这两个函数,但是在链接发生之前,我们并不知道该跳转到哪里,这些信息就会存储在重定位表里;

  4. 最后是.symtab Section,叫作符号表(Symbol Table)。符号表保留了我们所说的当前文件里面定义的函数名称和对应地址的地址簿。

链接器会扫描所有输入的目标文件,然后把所有符号表里的信息收集起来,构成一个全局的符号表。然后再根据重定位表,把所有不确定要跳转地址的代码,根据符号表里面存储的地址,进行一次修正。最后,把所有的目标文件的对应段进行一次合并,变成了最终的可执行代码。这也是为什么,可执行文件里面的函数调用的地址都是正确的。

在链接器把程序变成可执行文件之后,要装载器去执行程序就容易多了。装载器不再需要考虑地址跳转的问题,只需要解析 ELF 文件,把对应的指令和数据,加载到内存里面供 CPU 执行就可以了。

小结

为什么同样一个程序,在 Linux 下可以执行而在 Windows 下不能执行了。其中一个非常重要的原因就是,两个操作系统下可执行文件的格式不一样。

我们今天讲的是 Linux 下的 ELF 文件格式,而 Windows 的可执行文件格式是一种叫作PE(Portable Executable Format)的文件格式。Linux 下的装载器只能解析 ELF 格式而不能解析 PE 格式。

如果我们有一个可以能够解析 PE 格式的装载器,我们就有可能在 Linux 下运行 Windows 程序了。这样的程序真的存在吗?没错,Linux 下著名的开源项目 Wine,就是通过兼容 PE 格式的装载器,使得我们能直接在 Linux 下运行 Windows 程序的。而现在微软的 Windows 里面也提供了 WSL,也就是 Windows Subsystem for Linux,可以解析和加载 ELF 格式的文件。

我们去写可以用的程序,也不仅仅是把所有代码放在一个文件里来编译执行,而是可以拆分成不同的函数库,最后通过一个静态链接的机制,使得不同的文件之间既有分工,又能通过静态链接来“合作”,变成一个可执行的程序。

对于 ELF 格式的文件,为了能够实现这样一个静态链接的机制,里面不只是简单罗列了程序所需要执行的指令,还会包括链接所需要的重定位表和符号表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105678.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《机器学习》第5章 神经网络

文章目录 5.1 神经元模型5.2 感知机与多层网络5.3 误差逆传播算法5.4 全局最小与局部最小5.5 其他常见神经网络RBF网络ART网络SOM网络级联相关网络Elman网络Boltzmann机 5.6 深度学习 5.1 神经元模型 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络&#xff0c;它…

如何做好数据分析中的数据可视化?

数据可视化在数据分析中扮演着重要的角色&#xff0c;它帮助我们更好地理解和传达数据的特征、趋势和规律。以下是关于如何做好数据分析中的数据可视化的详细介绍。 一、准备工作 1. 理解数据 在进行数据可视化之前&#xff0c;首先要对数据有一个清晰的理解。了解数据的来源…

Yakit工具篇:简介和安装使用

简介(来自官方文档) 基于安全融合的理念&#xff0c;Yaklang.io 团队研发出了安全领域垂直语言Yaklang&#xff0c;对于一些无法原生集成在Yak平台中的产品/工具&#xff0c;利用Yaklang可以重新编写 他们的“高质量替代”。对于一些生态完整且认可度较高的产品&#xff0c;Y…

JavaScript 通过数组对JSON key字段进行排序

这里我以vue为例 不过json排序用的js方式 任何前端项目都可以通过js完成 我们组件代码现在是这样的 <template><div><div v-for "item in navCateList" :key "item.id">{{ item.name }}</div></div> </template>&…

使用.NET实现WOL唤醒远程开机

文章目录 1. 背景2. 关于 WOL2.1 WOL 工作原理2.2 开启网卡唤醒功能 3. 快速验证3.1 局域网 Wake on Lan 应用3.2 Ubuntu 的 etherwake 命令4. 代码实现4.1 创建.NET控制台应用程序4.2 编写代码4.3 运行应用程序 5. 最后 1. 背景 家居自动化是现代智能家居的重要组成部分&…

[ROS2系列] ubuntu 20.04测试rtabmap

目录 背景&#xff1a; 一、配置 turtlebot3 二、安装RTAB-Map ROS2包&#xff1a; 三、启动 Turtlebot3 模拟器&#xff1a; 四、启动 RTAB 地图&#xff1a; 五、启动导航&#xff08;nav2_bringup应安装软件包&#xff09;&#xff1a; 背景&#xff1a; 1、设备&…

杀死僵尸进程ZooKeeperMain

关闭Hadoop后jps发现还有个进程ZooKeeperMain没有关闭&#xff0c;使用kill -9 <>也没有用&#xff0c;这种就是僵尸进程&#xff0c;需要用父进程ID来杀死 解决方法 话不多说&#xff0c;直接上解决方案&#xff0c; 1. 第一步 清楚需要关闭的进程ID&#xff0c;我…

项目配置vue.config jsconfig babel.config .prettierc .env .eslintrc

.env 在一个产品的前端开发过程中&#xff0c;一般来说会经历本地开发、测试脚本、开发自测、测试环境、预上线环境&#xff0c;然后才能正式的发布。对应每一个环境可能都会有所差异&#xff0c;比如说服务器地址、接口地址、websorket地址…… 等等。在各个环境切换的时候&am…

小程序 | 小程序后端用什么语言开发比较好

目录 ♣️ 引言 选择合适的后端语言 推荐使用Node.js Node.js 的优点 其他备选语言 ♣️ 小结 ♣️ 引言 小程序的兴起已经成为了当今移动互联网时代的热点之一&#xff0c;而小程序后端的好坏直接影响着小程序的使用体验&#xff0c;因此&#xff0c;选择一种好的语言来…

一键批量转换,轻松将TS视频转为MP4视频,实现更广泛的播放和分享!

在享受精彩视频内容的同时&#xff0c;有时我们可能会面临一个问题&#xff1a;某些视频格式可能不太适合我们的播放设备或分享平台。特别是TS格式的视频&#xff0c;在一些情况下可能无法直接播放或上传。但是不用担心&#xff0c;因为我们为您提供了一款强大的视频剪辑工具&a…

数据特征选择 | Lasso特征选择(Python)

文章目录 效果一览文章概述源码设计小结效果一览 文章概述 Lasso算法是一种经典的线性回归算法,被广泛应用于特征选择和降维问题。相较于传统的线性回归算法,Lasso算法能够在保持预测准确性的同时,自动筛选出对目标变量影响较大的特征变量,从而达到降低模型复杂度、提高泛化…

Python文件读写实战:处理日常任务的终极工具!

更多资料获取 &#x1f4da; 个人网站&#xff1a;涛哥聊Python Python文件的读写操作时&#xff0c;有很多需要考虑的细节&#xff0c;这包括文件打开方式、读取和写入数据的方法、异常处理等。 在本文中&#xff0c;将深入探讨Python中的文件操作&#xff0c;旨在提供全面的…

TSINGSEE青犀智慧城市数字基座解决方案,助力城市数字化转型

一、行业背景 我国“十四五”规划纲要中提出&#xff0c;分级分类推进新型智慧城市建设&#xff0c;将物联网感知设施、通信系统等纳入公共基础设施统一规划建设&#xff0c;推进市政公用设施、建筑等物联网应用和智能化改造。完善城市信息模型平台和运行管理服务平台&#xf…

Godot2D角色导航-自动寻路教程(Godot设置导航代理的目标位置)

文章目录 创建导航NavigationAgent2D节点设置目标位置其他文章 创建导航 首先&#xff0c;创建一个基本的场景&#xff0c;下面的文章讲解了如何创建一个基本的导航场景&#xff0c;点击如下链接前往该文章&#xff1a; Godot2D角色导航-自动寻路教程 NavigationAgent2D节点 …

蓝桥杯(迷宫,C++)

输入&#xff1a; 思路&#xff1a; 1、注意输入用字符串。 2、采用广度搜素的方法来求解。 3、因为最后要求字典序最小且D<L<R<U,所以在遍历四个方向的时候&#xff0c; 先向下&#xff0c;再向左、右&#xff0c;最后向上。 #include<iostream> #include…

thinkphp6

unexpected , expecting case (T_CASE) or default (T_DEFAULT) or } 在模板中应用{switch}{/switch}标签,报错,其实是switch的问题&#xff0c;模板解析后&#xff0c;switch:和第一个case:之间不能有有输出的&#xff0c;一个空格也不行&#xff0c;所以第一个要紧跟着 Thi…

基于Jaya优化算法的电力系统最优潮流研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

数据库管理-第109期 19c OCM考后感(20231015)

数据库管理-第109期 19c OCM考后感&#xff08;202301015&#xff09; 距离上一篇又过了两周多&#xff0c;为啥又卡了这么久&#xff0c;主要是后面几个问题&#xff1a;1. 9月1日的19c OCM upgrade考试木有过&#xff0c;因为有一次免费补考机会就又预约了10月8日的考试&…

网络工程师知识点3

41、各个路由协议&#xff0c;在华为设备中的优先级&#xff1f; 直连路由 0 OSPF 10 静态 60 42、OSPF&#xff1a;开放式最短路径优先路由协议&#xff0c;使用SPF算法发现和计算路由 OSPF的优点&#xff1a; 1、收敛速度快&#xff0c;无路由自环&#xff0c;适用于大型网络…

Docker系列--镜像和容器备份与恢复的方法

原文网址&#xff1a;Docker系列--镜像和容器备份与恢复的方法_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍备份和恢复Docker镜像与容器的方法。 命令对比 保存与导出 docker save&#xff1a;保存的是镜像&#xff08;image&#xff09;。&#xff08;保存的是分层的…