Carla教程一、动力学模型到LQR
从运动学模型和动力学模型到LQR
模型就是可以描述车辆运动规律的模型。车辆建模都是基于自行车模型的设定,也就是将四个轮子抽象为自行车一样的两个轮子来建模。
1、运动学模型
运动学模型是基于几何关系分析出来的,一般适用于低俗情况下,这种情况可以不考虑轮胎的侧偏特性。另外,这里假设前轮的方向就是当前车辆速度的方向。但是高速情况并非如此。整个控制量可以简化为加速度a和偏航角 δ \delta δ。其中油门代表a为正,刹车代表a为负。偏航角是方向盘的控制量。然后可以定义下面的几个状态量,用来描述车辆当前状态:
- x:车辆当前横轴坐标
- y:车辆纵轴坐标
- v: 车辆速度
- φ \varphi φ:车辆横摆角
最后推导得到的动力学模型如下:
x ˙ = v cos φ y ˙ = v sin φ φ ˙ = v tan δ f L \dot{x}=v\cos \varphi \\ \dot{y}=v\sin \varphi \\ \dot{\varphi}=\frac{v\tan \delta _f}{L} x˙=vcosφy˙=vsinφφ˙=Lvtanδf
其中 δ f \delta_f δf是前轮的转向角。因为后轮一般都是不转向的,所以 δ r \delta_r δr是零。
2、动力学模型
需要考虑轮胎的侧偏性质。动力学模型是通过对轮胎和地面之间的相互作用来描述车辆的运动。动力学模型是基于车辆的动力学原理进行建模的,它考虑了车辆的质量、加速度、速度、转向等因素,可以更加精确地预测车辆的运动轨迹。动力学模型的优点在于可以考虑更多的因素,更加精确地预测车辆的运动轨迹,适用于高速行驶和紧急情况下的自动驾驶。但是,动力学模型对传感器的精度要求较高,对于复杂的路况和车辆之间的交互,需要更多的计算资源。
动力学模型可以将车辆运动的横纵向解耦,而运动学模型则无法解耦。
根据自行车动力学模型的推导,注意动力学模型中一个很关键的参数就是轮胎测偏参数,轮胎测偏力和轮胎测偏角度成正比。在实际中,测偏刚度是负数。
经过推导可以计算出关于横向速度和角速度作为状态变量,横向加速度和横向角速度变化量为因变量的状态方程。如下:
( y ¨ φ ¨ ) = ( C φ f + C φ r m v x a C φ f − b C φ r I v x a C φ f + b C φ r m v x − v x a 2 C φ f + b 2 C φ r I v x ) ( y ˙ φ ˙ ) + ( − C φ f m − a C φ f I ) δ \,\,\left( \begin{array}{c} \ddot{y}\\ \ddot{\varphi}\\ \end{array} \right) \,\,=\,\,\left( \begin{array}{c} \frac{C_{\varphi _f}+\,\,C_{\varphi _r}}{mv_x}\\ \frac{aC_{\varphi _f}-\,\,bC_{\varphi _r}}{Iv_x}\\ \end{array} \right. \left. \begin{array}{c} \frac{aC_{\varphi _f}+\,\,bC_{\varphi _r}}{mv_x}-v_x\\ \frac{a^2C_{\varphi _f}+\,\,b^2C_{\varphi _r}}{Iv_x}\\ \end{array} \right) \left( \left. \begin{array}{c} \dot{y}\\ \dot{\varphi}\\ \end{array} \right) \right. \,\,+\,\,\left( \begin{array}{c} -\frac{C_{\varphi _f}}{m}\\ -\frac{aC_{\varphi f}}{I}\\ \end{array} \right) \delta (y¨φ¨)=(mvxCφf+CφrIvxaCφf−bCφrmvxaCφf+bCφr−vxIvxa2Cφf+b2Cφr