PaddleOCR:一款高性能的OCR工具介绍

一、引言

随着人工智能技术的不断发展,光学字符识别(OCR)技术在各行各业得到了广泛应用。OCR技术能够将图片、扫描件等非结构化数据中的文字信息提取出来,转换为可编辑的文本格式。在我国,百度开源了一款优秀的OCR工具——PaddleOCR,它凭借其高性能、易用性等特点,受到了广大开发者的喜爱。本文将为您详细介绍PaddleOCR及其应用。

二、PaddleOCR简介

PaddleOCR是一款基于飞桨深度学习平台开发的开源OCR工具,具有以下特点:

  1. 高性能:PaddleOCR采用了先进的深度学习技术,识别速度快,准确率高。

  2. 轻量级:PaddleOCR支持多种部署方式,包括服务器端、移动端和嵌入式设备,满足不同场景的需求。

  3. 多语言支持:PaddleOCR支持多种语言识别,包括中文、英文、日文、韩文等。

  4. 简单易用:PaddleOCR提供了丰富的API接口,方便开发者快速集成到自己的项目中。

  5. 持续更新:PaddleOCR团队持续优化算法,更新版本,为用户提供更好的使用体验。

三、PaddleOCR核心技术

  1. 文本检测:PaddleOCR采用CRAFT(Character Region Awareness for Text detection)算法进行文本检测,能够准确识别各种场景下的文字区域。

  2. 文本识别:PaddleOCR采用CRNN(Convolutional Recurrent Neural Network)算法进行文本识别,结合CTC(Connectionist Temporal Classification)损失函数,实现高效准确的文字识别。

  3. 端到端训练:PaddleOCR支持端到端训练,用户可以根据自己的需求,自定义训练数据,优化模型性能。

四、PaddleOCR应用场景

  1. 文档数字化:PaddleOCR可用于将纸质文档、扫描件等转换为可编辑的电子文档,提高办公效率。

  2. 身份证识别:PaddleOCR可应用于身份证、驾驶证等证件信息的自动提取,简化信息录入流程。

  3. 车牌识别:PaddleOCR可用于车牌识别,广泛应用于智能交通、停车场管理等场景。

  4. 表格识别:PaddleOCR支持表格识别,可应用于财务报表、问卷调查等场景的数据提取。

  5. 语音助手:PaddleOCR可结合语音识别技术,实现语音助手场景下的文字识别需求。

五、总结

PaddleOCR是一款高性能、易用、多语言支持的OCR工具,适用于多种场景的文字识别需求。随着人工智能技术的不断进步,PaddleOCR将在更多领域发挥重要作用,助力企业提高办公效率,降低运营成本。感兴趣的读者可以尝试使用PaddleOCR,探索更多应用可能性。

 

import os
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import numpy as npocr = PaddleOCR(use_angle_cls=True, lang='ch')img_path = '博物馆物业服务投标方案_194.jpg'
img = Image.open(img_path).convert('RGB')
img = np.array(img)
result = ocr.ocr(img, cls=True)for line in result:for e in line:print(e[1][0])# image = Image.open(img_path).convert('RGB')
# boxes = [line[0] for line in result]
# txts = [line[1][0] for line in result]
# scores = [line[1][1] for line in result]
# im_show = draw_ocr(image, boxes, txts, scores, font_path='测试1.ttf')
# im_show = Image.fromarray(im_show)
# im_show.save('result.jpg')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/62324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如果在docker 容器中安装ros遇到的问题

1.在容器内部无法修改时间,需要在宿主机外边修改时钟。修改时钟: hwclock --systohc或者执行 date -s "2024-11-24 19:25:10"2.容器内部内置有opencv4.5版本,需要卸载,重新安装4.2.0版本。记录折腾好久的卸载过程。 …

LLM*:路径规划的大型语言模型增强增量启发式搜索

路径规划是机器人技术和自主导航中的一个基本科学问题,需要从起点到目的地推导出有效的路线,同时避开障碍物。A* 及其变体等传统算法能够确保路径有效性,但随着状态空间的增长,计算和内存效率会严重降低。相反,大型语言…

ACL的原理与配置

ACL技术概述 ACL;访问控制列表 技术背景: 园区重要服务器资源被随意访问,容易泄露机密,造成安全隐患 病毒侵入内网,安全性降低 网络宽带被各类业务随意挤占,服务质量要求高的宽带得不到保障&#xff0…

【配置】pycharm运行的项目如何修改名称(项目名称、模块名称)

当我们需要修改项目名称、模块名称的时候,能够在网上找一些修改的方法,但是有没有很保守但很使用的方法可以解决这个问题呢? 创建项目 通过pycharm创建一个django的项目 创建之后的项目目录: 更改项目名称: 往往以…

【新人系列】Python 入门(十四):文件操作

✍ 个人博客:https://blog.csdn.net/Newin2020?typeblog 📝 专栏地址:https://blog.csdn.net/newin2020/category_12801353.html 📣 专栏定位:为 0 基础刚入门 Python 的小伙伴提供详细的讲解,也欢迎大佬们…

MySQL 启动失败问题分析与解决方案:`mysqld.service failed to run ‘start-pre‘ task`

目录 前言1. 问题背景2. 错误分析2.1 错误信息详解2.2 可能原因 3. 问题排查与解决方案3.1 检查 MySQL 错误日志3.2 验证 MySQL 配置文件3.3 检查文件和目录权限3.4 手动启动 MySQL 服务3.5 修复 systemd 配置文件3.6 验证依赖环境 4. 进一步优化与自动化处理结语 前言 在日常…

IDEA Maven 打包找不到程序包错误或找不到符号,报错“程序包不存在“

参考文章:https://blog.csdn.net/yueeryuanyi/article/details/14211090 问题:IDEA Maven 打包找不到程序包错误或找不到符号,报错“程序包不存在“编译都没问题 解决思路 – >【清除缓存】 1. 强制刷新Maven缓存 选择 Maven 标签,Exe…

通过 SSH 进行WordPress网站的高级服务器管理

我在管理hostease的服务器时,时常需要通过SSH登录服务器进行修改。而在网站管理中,SSH不仅是一个基础工具,更是高级用户用来精细化管理和优化服务器的重要工具。通过SSH,你可以深入监控服务器的性能、精细管理系统资源&#xff0c…

分布式搜索引擎之elasticsearch单机部署与测试

分布式搜索引擎之elasticsearch单机部署与测试 1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络: docker network create es-net1.2.加载镜像 这里我们采用elasticsearch的7.12.1版本的…

WPF+MVVM案例实战与特效(三十)- 封装一个系统日志显示控件

文章目录 1、运行效果2、日志控件封装1、文件创建2、DisplayLogPanel.xaml 代码3、using System;3、using System;3、数据模型4、枚举类型3、案例实现1、LogPanelWindow.xaml2、LogPanelViewModel.cs4、总结1、运行效果 2、日志控件封装 1、文件创建 打开 Wpf_Examples ,在 …

第二节——计算机网络(四)物理层

车载以太网采用差分双绞线车载以太网并未指定特定的连接器,连接方式更为灵活小巧,能够大大减轻线束重量。传统以太网一般使用RJ45连接器连接。车载以太网物理层需满足车载环境下更为严格的EMC要求,100BASE-T1\1000BASE-T1对于非屏蔽双绞线的传…

使用vcpkg自动链接tinyxml2时莫名链接其他库(例如boost)

使用vcpkg自动链接tinyxml2时莫名链接其他库(例如boost) vcpkg的自动链接功能非常方便,但在某些情况下会出现过度链接的问题。 链接错误症状 以tinyxml2为例,程序中调用tinyxml2的函数后,若vcpkg中同时存在opencv和…

PyTorch 模型转换为 ONNX 格式

PyTorch 模型转换为 ONNX 格式 在深度学习领域,模型的可移植性和可解释性是非常重要的。本文将介绍如何使用 PyTorch 训练一个简单的卷积神经网络(CNN)来分类 MNIST 数据集,并将训练好的模型转换为 ONNX 格式。我们还将讨论 PTH …

Vue+Elementui el-tree树只能选择子节点并且支持检索

效果&#xff1a; 只能选择子节点 添加配置添加检索代码 源码&#xff1a; <template><div><el-button size"small" type"primary" clearable :disabled"disabled" click"showSign">危险点评估</el-button>…

分析JHTDB数据库的Channel5200数据集的数据(SciServer服务器)

代码来自https://github.com/idies/pyJHTDB/blob/master/examples/channel.ipynb %matplotlib inline import numpy as np import math import random import pyJHTDB import matplotlib.pyplot as plt import time as ttN 3 T pyJHTDB.dbinfo.channel5200[time][-1] time …

《Vue零基础入门教程》第十二课:双向绑定指令

往期内容 《Vue零基础入门教程》第六课&#xff1a;基本选项 《Vue零基础入门教程》第八课&#xff1a;模板语法 《Vue零基础入门教程》第九课&#xff1a;插值语法细节 《Vue零基础入门教程》第十课&#xff1a;属性绑定指令 《Vue零基础入门教程》第十一课&#xff1a;事…

windows 应用 UI 自动化实战

UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环&#xff0c;网络上也有很多 UI 自动化相关的知识或资料&#xff0c;具体到 windows 端的 UI 自动化&#xff0c;我们需要从以下几个方面考虑&#xff1a; 开发语言 毋庸置疑&#xff0c;在 UI 自动化测试领域&am…

linux部署Whisper 视频音频转文字

github链接&#xff1a;链接 我这里使用anaconda来部署&#xff0c;debian12系统&#xff0c;其他linux也同样 可以使用gpu或者cpu版本&#xff0c;建议使用n卡&#xff0c;rtx3060以上 一、前期准备 1.linux系统 链接&#xff1a;debian安装 链接&#xff1a;ubuntu安装 …

MySQL聚合查询分组查询联合查询

#对应代码练习 -- 创建考试成绩表 DROP TABLE IF EXISTS exam; CREATE TABLE exam ( id bigint, name VARCHAR(20), chinese DECIMAL(3,1), math DECIMAL(3,1), english DECIMAL(3,1) ); -- 插入测试数据 INSERT INTO exam (id,name, chinese, math, engli…

mini-spring源码分析

IOC模块 关键解释 beanFactory&#xff1a;beanFactory是一个hashMap, key为beanName, Value为 beanDefination beanDefination: BeanDefinitionRegistry&#xff0c;BeanDefinition注册表接口&#xff0c;定义注册BeanDefinition的方法 beanReference&#xff1a;增加Bean…