GS-SLAM Dense Visual SLAM with 3D Gaussian Splatt 论文阅读

项目主页

2024 CVPR (highlight)
https://gs-slam.github.io/
在这里插入图片描述

摘要

本文提出了一种基于3D Gaussian Splatting方法的视觉同步定位与地图构建方法。
与最近采用神经隐式表达的SLAM方法相比,本文的方法利用实时可微分泼溅渲染管道,显著加速了地图优化和RGB-D渲染。

贡献

本文提出了一种自适应扩展策略,添加新的或删除噪声 3D 高斯,以便有效地重建新观察到的场景几何形状并改进先前观察到的区域。
此外,在姿态跟踪过程中,设计了一种有效的从粗到精的技术来选择可靠的3D高斯表示来优化相机姿态,从而减少运行时间和鲁棒估计。

简介

传统SLAM方法

  1. 同步定位与建图 (SLAM) 已成为机器人 [6]、虚拟现实 [10] 和增强现实 [25, 39] 等领域的关键技术。
  2. SLAM 的目标是构建未知环境的密集/稀疏地图,同时跟踪相机姿态。
  3. 传统的SLAM方法采用点/面元云[20,32,42,46],网格表示[26],体素散列[12,18,23]或体素网格[21]作为场景表示来构造稠密映射,并且已经在定位精度上取得了长足进步。

神经隐式表达方法

  1. 最近,神经辐射场 (NeRF) [19] 已被探索用于增强 SLAM 方法,并在生成低内存消耗的高质量、密集地图方面展现出优势 [35]。
  2. iMAP [35] 使用单个多层感知器(MLP)来表示整个场景,该场景通过体积渲染 RGB-D 图像和地面实况观测之间的损失进行全局更新。
  3. NICE-SLAM [55]利用分层神经隐式网格作为场景地图表示,以允许局部更新来重建大场景。
  4. ESLAM[11]、CoSLAM[41]和EN-SLAM[24]利用轴对齐特征平面和联合坐标参数编码来提高场景表示能力,实现高效、高质量的表面地图重建。

最近的工作[13,17,47]使用3D高斯表示和基于图块的泼溅技术在高分辨率图像渲染的效率方面表现出了巨大的优越性。它用于合成静态物体的新视角 RGB 图像,以实时速度实现 1080p 分辨率的最先进的视觉质量。受此启发,本文将3D高斯场景表示和实时可微喷射渲染管道的渲染优势扩展到密集RGB-D SLAM任务,并共同提升基于NeRF的密集SLAM的速度和精度。

相关工作

密集视觉SLAM
现有的实时密集视觉 SLAM 系统通常基于离散的手工特征或深度学习嵌入,并遵循[16]中的映射和跟踪架构。

  1. DTAM [22] 首先引入了密集 SLAM 系统,该系统使用光度一致性来跟踪手持相机并将场景表示为成本量。
  2. KinectFusion [44] 通过迭代最近点执行相机跟踪,并通过 TSDF-Fusion 更新场景。
  3. BAD-SLAM [29] 提出通过直接束调整 (BA) 技术联合优化关键帧姿势和 3D 场景几何。
  4. 相比之下,最近的工作将深度学习与传统几何框架相结合,以实现更准确、更鲁棒的相机跟踪和建图,例如 DROID-SLAM [37]、CodeSLAM [1]、SceneCode [54] 和 NodeSLAM [34],在该领域取得了重大进展,实现了更准确、更强大的相机跟踪和地图性能。

基于神经隐式辐射场的 SLAM

对于基于NeRF的SLAM,现有的方法可以分为三种主要类型:基于MLP的方法(MLP-based methods)、混合表示方法(Hybrid representation methods)和显式方法(Explicit methods)。

  1. 基于 MLP 的方法 iMAP [35] 提供了可扩展且内存高效的地图表示,但在较大场景中面临灾难性遗忘的挑战。
  2. 混合表示方法结合了隐式 MLP 和结构特征的优点,显着增强了场景的可扩展性和精度。例如,NICE-SLAM [55]将MLP与多分辨率体素网格集成,从而实现大场景重建,Vox-Fusion [48]采用八叉树扩展来实现动态地图可扩展性,而ESLAM [11]和Point-SLAM [27]则利用三叉树扩展分别使用平面和神经点云来提高建图能力。
  3. 至于[38]中提出的显式方法,它将地图特征直接存储在体素中,没有任何MLP,从而实现更快的优化。 GS-SLAM 不是用隐式特征来表示地图,而是利用 3D 高斯表示,使用基于泼溅的光栅化有效地渲染图像,并通过反向传播直接优化参数。

3D高斯表示
最近的几种方法使用 3D 高斯进行形状重建,例如 Fuzzy Metaballs [14, 15]、VoGE [40]、3DGS [13]。

3DGS [13] 在高质量实时新视图合成方面表现出巨大的优势。本文工作用 3D 高斯表示场景,并开发了 NeRFstyle 快速渲染算法来支持各向异性泼溅,实现了 SOTA 视觉质量和快速高分辨率渲染性能。除了渲染优势之外,高斯泼溅还拥有明确的几何场景结构和外观,这得益于场景表示的精确建模[50]。这项有前景的技术已迅速应用于多个领域,包括 3D 生成 [3,36,51]、动态场景建模 [17][47][49] 和逼真的可驾驶化身 [56]。然而,由于主要管道[13]的固有局限性,即初始化点云或相机位姿输入的先决条件[28],目前还没有使用3D高斯模型解决相机位姿估计或实时映射的研究。相比之下,本文推导了高斯表示中姿态估计的解析导数方程,并实现了高效的 CUDA 优化。

方法

3D 高斯场景表示

与3DGS论文中的方法一样,将场景建模为一组带有不透明度和球谐函数的3D 高斯函数。
每个 3D 高斯场景表示 G i G_i Gi 由位置 X i ∈ R 3 x 3 X_i \in R^{3x3} XiR3x3 协方差矩阵 ∑ i ∈ R 3 × 3 \sum_i \in R^{3×3} iR3×3、不透明度 Λ i ∈ R Λ_i \in R ΛiR 和每个颜色通道的 1 度球谐函数 (Y ) 定义, Y i ∈ R 12 Y_i \in R^{12} YiR12 总共有 12 个系数。

然后为了便于优化,将3D高斯协方差表达为一个尺度向量和旋转矩阵的公式。

这里的一系列操作和3DGS论文的处理是一样的。

自适应的3D高斯扩展映射

为了实现稳定的映射,只在给定的关键帧上进行优化和更新。
对于给定的关键帧和对应的估计姿势,首先应用自适应扩展策略从整个场景中添加3D高斯或删除噪声3D高斯,然后用现有的3D高斯渲染一张分辨率为 H ∗ W H*W HW的RGB-D图像,通过最小化几何深度 L d L_d Ld到传感器观察深度D和光度颜色 L c L_c Lc到传感器观察颜色的损失。
自适应的3D 高斯扩展策略
初始化:用RGB-D图像序列第一帧来初始化高斯场景。均匀采样图像分辨率一半的像素,将其分别反向映射到3D空间中对应的点。每一个点除了有位置信息之外还有初始化的3D高斯函数的参数。
剩下的一半像素用于进行高斯自适应密度控制。

添加高斯点步骤:
在每个关键帧,使用历史 3D 高斯添加第一个渲染的 RGB-D 图像,并计算每个像素的累积不透明度。如果这个不透明度低于一定阈值或者,这个像素的渲染深度和观察深度差距大于一定阈值,认为这个像素是不可靠像素,标记为" x u n x^{un} xun"。这些不可靠像素大多用来捕获新的观察区域。将这些不可靠像素反投影到3D空间的对应点 P u n P^{un} Pun,并初始化这个点的高斯函数参数。

删除高斯点步骤:
用前面设计的损失函数优化的高斯场景会有很多多余的高斯点。检查当前相机视椎体中所有可见3D高斯,降低位置不在场景表面附近的3D高斯的不透明度。
具体是这样操作的,对于每个可见的 3D 高斯,从相机原点 o 及其位置 X i = ( x i , y i , z i ) X_i = (x_i, y_i, z_i) Xi=(xi,yi,zi) 绘制一条射线 r ( t ) r(t) r(t),即 r ( t ) = o + t ( X i − o ) r(t) = o + t(X_i − o) r(t)=o+t(Xio)。然后,可以找到该射线与图像平面相交的坐标为 (u, v) 的像素以及相应的观测深度 D。相当于计算一个渲染深度和观测深度的差值,根据这个差值,计算对应高斯点的透明度。

跟踪和捆绑调整

首先采用常见的简单的恒定速度假设来初始化新的姿势。该假设基于倒数第二个姿势和最后一个姿势之间的相对变换来变换最后一个已知姿势。然后,通过最小化渲染颜色损失来优化准确的相机位姿 P。
可微的姿态估计
这里推导了相机位姿的解析式,简化了结果,便于进行对相机位姿进行优化。
由粗到细的相机追踪
不能用所有图像像素对相机姿势进行优化,因为图像中可能存在伪影(我理解是像素的颜色或者深度不准确)。本文首先用图像规律性仅渲染系数像素集并优化跟踪损失获得粗略的相机姿态,这样能减轻细节伪影的影响。然后用粗略的相机姿态和深度观察来选择可靠的3D高斯,通过进一步优化新渲染像素上的跟踪损失来细化粗略的相机姿态。
捆绑调整
在捆绑调整(BA)阶段,联合优化相机位姿 P 和 3D 高斯场景表示 S。本文从关键帧数据库中随机选择K个关键帧进行优化,使用与映射部分类似的损失函数。为了姿势优化稳定性,仅在迭代的前半部分优化场景表示 S。在迭代的另一半中,同时优化地图和姿势。然后,通过最小化渲染颜色损失来优化准确的相机位姿P。
在这里插入图片描述

实验部分

数据集
用得是Replica和TUM-RGBD
基线
将本文的方法与现有的基于 SOTA NeRF 的密集视觉 SLAM:NICE-SLAM [55]、VoxFusion [48]、CoSLAM [41]、ESLAM [11] 和 PointSLAM [27] 进行比较。
CoSLAM [41]和ESLAM [11]的渲染性能是根据[27]文章中具有相同配置的开源代码进行的。
指标
网格重建:
2D Depth L1
Precision 精确度
Recall 召回率
F-score F分数以 1 厘米为阈值来测量场景几何形状。
对于定位:
absolute trajectory (ATE, cm) error [33] 绝对轨迹误差
对于渲染性能:
peak signal-to-noise ratio (PSNR) 峰值信噪比
SSIM 结构衡量指标
LPIPS 可学习感知图像块相似度
实验结果和细节
参考论文即可,不再赘述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/57160.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Lfsr32

首先分析 Lfsr5 首先要理解什么是抽头点(tap),注意到图中有两个触发器的输入为前级输出与q[0]的异或,这些位置被称为 tap position.通过观察上图,所谓抽头点指的就是第5个,第3个寄存器的输入经过了异或逻辑…

ArkUI自定义TabBar组件

在ArkUI中的Tabs,通过页签进行内容视图切换的容器组件,每个页签对应一个内容视图。其中内容是图TabContent作为Tabs的自组件,通过给TabContent设置tabBar属性来自定义导航栏样式。现在我们就根据UI设计的效果图来实现下图效果: 根…

【stm32】DMA的介绍与使用

DMA的介绍与使用 1、DMA简介2、存储器映像3、DMA框图4、DMA基本结构5、DMA请求6、数据宽度与对齐7、数据转运DMA(存储器到存储器的数据转运)程序编写: 8、ADC连续扫描模式DMA循环转运DMA配置:程序编写: 1、DMA简介 DM…

【python】OpenCV—Sort the Point Set from Top Left to Bottom Right

文章目录 1、功能描述2、代码实现3、效果展示4、更多例子5、参考 1、功能描述 给出一张图片,里面含有各种图形,取各种图形的中心点,从左到右从上到下排序 例如 2、代码实现 import cv2 import numpy as npdef process_img(img):img_gray c…

# linux从入门到精通-从基础学起,逐步提升,探索linux奥秘(十四)--计算机网络基础和相关命令

linux从入门到精通-从基础学起,逐步提升,探索linux奥秘(十四)–计算机网络基础和相关命令 一、计算机网络基础1(Linux的网络基础) 1、网络相关概述:网络发展 1)信息传递 远古时期…

CANoe_数据回放功能功能介绍_时间段(区间)选择

CANoe的日志回放功能,可以选择时间段回放,这样可以在数据量很大的时候快速定位分析数据问题点 CANoe日志回放功能概述 CANoe的日志回放功能允许用户重现和分析已记录的CAN总线或其他网络总线数据。这些日志文件通常以CANoe自己的日志格式(.b…

MarkDownload 剪裁网页插件配置使用全流程

前言 写在前面,大家有什么问题和需要可以跟我交流 需求 之前一直使用 Joplin 的剪裁网页功能,但是剪裁下来后不可避免的需要使用 Joplin 对剪裁下来的内容做处理,Joplin 用起来不是很习惯,所以在想可不可以用 Obsidian 来实现网…

雷池WAF自动化实现安全运营实操案例终极篇

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…

OpenShift 4 - 云原生备份容灾 - Velero 和 OADP 基础篇

《OpenShift 4.x HOL教程汇总》 说明: 本文主要说明能够云原生备份容灾的开源项目 Velero 及其红帽扩展项目 OADP 的概念和架构篇。操作篇见《OpenShift 4 - 使用 OADP 对容器应用进行备份和恢复(附视频) 》 Velero 和 OADP 包含的功能和模…

three.js 毛玻璃着色器的效果

three.js 毛玻璃着色器的效果 在线链接:https://threehub.cn/#/codeMirror?navigationThreeJS&classifyshader&idgroundglass 国内站点预览:http://threehub.cn github地址: https://github.com/z2586300277/three-cesium-examples import…

MySQL基础笔记小结

1. mysql : 1.1启动与停止mysql: net start mysql80 net stop mysel80 1.2客户端连接: 2种,系统cmd与自带的cmd(直接打开) mysql -u root-p 1.2.1 数据存储 RDBMS:关系型数据库:建立在关系模型基础上&…

在海外留学/工作,如何报考微软mos认证?

重点首先得强调的是,即使在海外也可以顺利地在国内获取微软MOS认证! 01 微软mos认证简介 Microsoft Office Specialist 简称MOS。是微软公司和第三方国际认证机构、全球三大IT测验与教学中心之一的思递波/Certiport公司于1997年联合推出的,…

python爬虫,爬取网页壁纸图片

python爬虫实战,爬取网页壁纸图片 使用python爬取壁纸图片,保存到本地。 爬取彼岸图网,网站地址https://pic.netbian.com/ 本人小白,记录一下学习过程。 开始前的准备 安装python环境,略。 python编辑器pycharm2…

ThinkPad T480拆机屏幕改装:便携式显示器DIY指南

ThinkPad T480拆机屏幕改装:便携式显示器DIY指南 本文记录了将旧笔记本电脑 T480 拆机屏幕改装为便携式显示器的全过程。作者在决定升级设备后,选择通过 DIY 方式利用原有的屏幕资源。文章详细介绍了屏幕驱动板的安装、螺丝孔的剪裁、排线连接及固定的步…

[AWS]RDS数据库版本升级

背景:由于AWS上mysql5.7版本不再支持,需要进行版本升级。 吐槽:每年都要来那么几次,真的有病一样,很烦。 步骤一、升级检查 AWS提供了一个python的升级检测脚本,可以按照一下脚本下载测试: [r…

Kibana可视化Dashboard如何基于字段是否包含某关键词进行过滤

kinana是一个功能强大、可对Elasticsearch数据进行可视化的开源工具。 我们在dashboard创建可视化时,有时需要将某个index里数据的某个字段根据是否包含某些特定关键词进行过滤,这个时候就可以用到lens里的filter功能很方便地进行操作。 如上图所示&…

架构师备考-背诵精华(系统架构评估)

系统架构评估是在对架构分析、评估的基础上,对架构策略的选取进行决策。它利用数学或逻辑分析技术,针对系统的一致性、正确性、质量属性、规划结果等不同方面,提供描述性、预测性和指令性的分析结果。 重要概念 敏感点:敏感点是…

docker 下载netcore 镜像

dotnet-docker/README.runtime.md at main dotnet/dotnet-docker GitHub docker pull mcr.microsoft.com/dotnet/runtime:8.0 docker pull mcr.microsoft.com/dotnet/runtime:3.1

二分查找算法 (算法详解+模板+例题)

文章目录 二分查找算法简介1.朴素的二分查找2. 在排序数组中查找元素的第一个和最后一个位置3. 搜索插入位置4. 山脉数组的峰顶索引5.寻找峰值6. 寻找旋转排序数组中的最小值 二分查找算法简介 二分查找算法并不是针对在数组有序的情况下,通过后面的题我们就会知道实际上只要是…

【贝加莱PLC基础教学】2.1 搜索并连接到对应的PLC(1)

【贝加莱PLC基础教学】目录大全_贝加莱plc p23 1361-CSDN博客 PLC其实和单片机差别不大,无非就是大一点的单片机。另外多加了一点点计算机网络和通讯知识,然而就是这一点点计算机网络知识让大家望而却步。 0.基础知识 在计算机网络中,我们通…