基于YOLO V8的PCB缺陷检测识别系统(python源码+Pyqt5界面+数据集+训练代码)

  1. 数据集准备:收集并标注PCB缺陷的图像。
  2. 模型训练:使用YOLO v8框架训练一个模型来识别这些缺陷。
  3. GUI开发:利用PyQt5创建一个用户友好的图形界面。
  4. 模型部署:在GUI中集成训练好的模型,使用户能够上传PCB图像并得到缺陷检测的结果。

下面是对这个项目的简要介绍以及一个简单的代码示例,包括了训练代码和GUI界面的基本结构。

项目简介

1. 数据集准备
  • 数据集:收集带有不同PCB缺陷类型的图像,并使用如LabelImg等工具进行标注。
  • 数据集划分:将数据集分为训练集、验证集和测试集。
2. 模型训练
  • 使用YOLO v8框架(如ultralytics/yolov8)进行训练。
  • 配置文件定义模型架构和训练参数。
  • 使用GPU加速训练过程。

3. GUI开发
  • 使用PyQt5设计一个简洁直观的界面,允许用户上传图片、查看结果等。
  • 实现模型加载和推理功能。
4. 模型部署
  • 将训练好的模型部署到GUI中,使得用户可以方便地使用该系统进行PCB缺陷检测。

训练代码示例

下面是一个简单的YOLO v8训练脚本示例,用于训练PCB缺陷检测模型。

1# train.py
2
3from ultralytics import YOLO
4
5# 加载YOLO v8模型
6model = YOLO('yolov8n.pt')  # 使用预训练模型作为基础
7
8# 设置训练参数
9data_config = 'data.yaml'  # 数据集配置文件
10epochs = 100  # 训练轮数
11batch = 16  # 批量大小
12
13# 开始训练
14results = model.train(data=data_config, epochs=epochs, batch=batch)

GUI代码示例

下面是一个使用PyQt5创建的基本GUI界面示例,用于展示如何集成YOLO v8模型进行实时检测。

1# gui.py
2
3import sys
4from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout, QLabel, QFileDialog
5from PyQt5.QtGui import QPixmap
6import cv2
7import numpy as np
8from ultralytics import YOLO
9
10class PCBDefectDetector(QWidget):
11    def __init__(self):
12        super().__init__()
13        self.initUI()
14
15    def initUI(self):
16        self.setWindowTitle('PCB Defect Detection System')
17        self.setGeometry(300, 300, 600, 400)
18
19        self.image_label = QLabel(self)
20        self.image_label.resize(400, 300)
21
22        self.load_button = QPushButton('Load Image', self)
23        self.load_button.clicked.connect(self.loadImage)
24
25        layout = QVBoxLayout()
26        layout.addWidget(self.image_label)
27        layout.addWidget(self.load_button)
28        self.setLayout(layout)
29
30    def loadImage(self):
31        options = QFileDialog.Options()
32        options |= QFileDialog.ReadOnly
33        file_name, _ = QFileDialog.getOpenFileName(self, "Open Image", "", "Image Files (*.png *.jpg *.jpeg)", options=options)
34        if file_name:
35            image = cv2.imread(file_name)
36            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
37            self.detect_defects(image)
38            height, width, channel = image.shape
39            bytes_per_line = 3 * width
40            q_image = QImage(image.data, width, height, bytes_per_line, QImage.Format_RGB888)
41            pixmap = QPixmap.fromImage(q_image)
42            self.image_label.setPixmap(pixmap)
43
44    def detect_defects(self, image):
45        # 加载模型
46        model = YOLO('path/to/best.pt')  # 替换为你的模型路径
47
48        # 进行推理
49        results = model.predict(source=image, save=False)
50
51        # 处理结果
52        for r in results:
53            boxes = r.boxes
54            for box in boxes:
55                b = box.xyxy[0]  # 获取边界框
56                c = box.cls  # 获取分类
57                # 绘制边界框
58                cv2.rectangle(image, (int(b[0]), int(b[1])), (int(b[2]), int(b[3])), (0, 255, 0), 2)
59
60app = QApplication(sys.argv)
61ex = PCBDefectDetector()
62ex.show()
63sys.exit(app.exec_())

项目结构

  • train.py:用于训练模型。
  • gui.py:用于运行GUI应用程序。
  • data.yaml:数据集配置文件。
  • images/ 和 labels/:存放训练图像和标注文件的目录。

请确保你已经安装了所有必要的库,并且正确设置了YOLO v8模型的路径。此外,你需要准备一个适当的数据集,并根据实际情况修改训练和GUI代码中的相关路径。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/52161.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IOS 11 通用Base控制器封装

整体规划 BaseController:把viewDidLoad逻辑拆分为三个方法,方便管理。 BaseCommonController:不同项目可以复用的逻辑,例如:设置背景颜色方法等 BaseLogicController:本项目的通用逻辑,主要…

实现 FastCGI

CGI的由来: 最早的 Web 服务器只能简单地响应浏览器发来的 HTTP 请求,并将存储在服务器上的 HTML 文件返回给浏 览器,也就是静态 html 文件,但是后期随着网站功能增多网站开发也越来越复杂,以至于出现动态技 术&…

【Pyhthon读取 PDF文件表格 ,转为 CSV/TSV/JSON文件】

tabula-py tabula-py 是一个将 PDF 表格转换为 pandas DataFrame 的工具。 tabula-py 是 tabula-java 的包装器,需要您的机器上有 java。 tabula-py 还允许您将 PDF 中的表格转换为 CSV/TSV 文件。 tabula-py 的 PDF 提取准确度与 tabula-java 或 tabula app 相…

JavaScript基础知识(六)

相关api介绍 数字类型 - parseInt - parseFloat 字符串类型 .length 返回字符串长度 字符串可以通过下标的方式来获取值 字符串的相关api都不会改变原来字符串,并且可以返回一个新的字符串,若要获取其值则需要声明新的变量获取 str.indexOf(char[,startIndex]) 查询st…

8/21作业

一、 非阻塞型IO 让我们的read函数不再阻塞,无论是否读取到消息,立刻返回 1.1 fcntl函数 原型:int fcntl(int fd, int cmd, ... /* arg */ ); 调用:int flag fcntl(描述符,F_GETFL) fcntl(描述符,F_SETFL&…

洛谷p10892题解

题目背景 AzureHair 在 NOIP 2022 中被喵了个喵创死,于是患上了不治之症——T2 恐惧症,于是他在 NOIP 2023 中果断跳过了 T2 并杠 T3 两小时无果,遗憾离场,他的同学决定帮他治疗这种不治之症。 在他的同学给他治愈了 T2 恐惧症后…

机器学习-KNN 算法

一.K-近邻(KNN) K-近邻(K-Nearest Neighbors, 简称 KNN)是一种基于实例的学习算法,主要用于分类和回归问题。KNN 的工作原理直观且简单,它基于相似性进行预测,也就是说给定一个新的数据点,KNN 算法会查找距…

JUC知识点总结

JUC应用场景 1. 网页服务器处理并发请求 当一个网页服务器需要处理大量并发请求时,可以使用多线程来提高处理效率。 import java.io.IOException; import java.net.ServerSocket; import java.net.Socket; ​ public class WebServer {public static void main(S…

8月21日笔记

Frp Frp(Fast e Reverse ) Proxy) 是一款简单,好用,稳定的隧道工具。Frp 使用 Go语言开发,支持跨平台,仅需下载对应平台的二进制文件即可执行,没有额外依赖。它是一款高性能的反向代理应用,可以轻松地进行…

Spring DI 数据类型—— set 方法注入

首先新建项目&#xff0c;可参考 初识IDEA、模拟三层--控制层、业务层和数据访问层 一、spring 环境搭建 &#xff08;一&#xff09;pom.xml 导相关坐标 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.or…

http连接未释放导致生产故障

凌晨4点运维老大收到报警&#xff08;公司官网页面超时&#xff0c;上次故障因为运维修改nginx导致官网域名下某些接口不可用后&#xff0c;运维在2台nginx服务器上放了检测程序&#xff0c;检测官网页面&#xff09;&#xff0c;运维自己先看了看服务器相关配置&#xff0c;后…

Java实现STL中的全排列函数next_permutation()

目录 一、引言 二、全排列函数next_permutation() 三、next_permutation()的使用 四、Java实现next_permutation() 五、使用next_permutation()实现全排列 一、引言 相信很多小伙伴们都做过全排列的算法题&#xff0c;输入一个n&#xff0c;输出1~n的全排列。对于这个问题…

k8s相关命令

一、Kubectl是什么 控制K8S通信的命令工具。 格式&#xff1a; kubectl [command] [TYPE] [NAME] [FLAGS] 二、Kubectl命令 1.查看容器命令 kubectl get pod kubectl get pod -n default #查看当前的命名空间的pod kubectl get pod -A #查看所有命名空间的pod kubectl de…

.Net插件开发开源框架

在.NET开发中&#xff0c;有许多开源框架可以用于插件开发&#xff0c;以下是一些最常见的框架&#xff1a; MEF&#xff08;Managed Extensibility Framework&#xff09; MEF是一个用于创建可插拔软件应用程序的库&#xff0c;它可以在不修改原始应用程序的情况下扩展应用程…

JVM 有哪些垃圾回收器?

JVM 有哪些垃圾回收器&#xff1f; 图中展示了7种作用于不同分代的收集器&#xff0c;如果两个收集器之间存在连线&#xff0c;则说明它们可以搭配使用。虚拟机所处的区域则表示它是属于新生代还是老年代收集器。 新生代收集器&#xff08;全部的都是复制算法&#xff09;&…

【安全靶场】-DC-7

❤️博客主页&#xff1a; iknow181 &#x1f525;系列专栏&#xff1a; 网络安全、 Python、JavaSE、JavaWeb、CCNP &#x1f389;欢迎大家点赞&#x1f44d;收藏⭐评论✍ 一、收集信息 1.查看主机是否存活 nmap -T4 -sP 192.168.216.149 2.主动扫描 看开放了哪些端口和功能 n…

【网络】UDP和TCP之间的差别和回显服务器

文章目录 UDP 和 TCP 之间的差别有连接/无连接可靠传输/不可靠传输面向字节流/面向数据报全双工/半双工 UDP/TCP API 的使用UDP APIDatagramSocket构造方法方法 DatagramPacket构造方法方法 回显服务器&#xff08;Echo Server&#xff09;1. 接收请求2. 根据请求计算响应3. 将…

JVM分代回收

JVM分代回收 堆中分为两份:新生代和老年代(1:2) 新生代 新生代的内部分为了三个区域 Eden区,From区,To区[8:1:1] 当eden区内存不足时,就会使用可达性分析算法进行标记 标记eden区和from区的存活对象 将这些对象复制到to区,对eden区和from区进行清除 如果eden下次又出现…

黑马头条vue2.0项目实战(十一)——功能优化(组件缓存、响应拦截器、路由跳转与权限管理)

1. 组件缓存 1.1 介绍 先来看一个问题&#xff1f; 从首页切换到我的&#xff0c;再从我的回到首页&#xff0c;我们发现首页重新渲染原来的状态没有了。 首先&#xff0c;这是正常的状态&#xff0c;并非问题&#xff0c;路由在切换的时候会销毁切出去的页面组件&#xff…

Java之HashMap的底层实现

Java之HashMap的底层实现 摘要HashMap的底层原理哈希值转换为数组下标节点初始化put(Object key, Object value)重写toString()get(Object key)增加泛化remove(K key) 摘要 本博客主要讲述了Java的HashMap的底层实现 HashMap的底层原理 底层原理&#xff1a;数组链表 过程…