【网络】UDP和TCP之间的差别和回显服务器

文章目录

  • UDP 和 TCP 之间的差别
    • 有连接/无连接
    • 可靠传输/不可靠传输
    • 面向字节流/面向数据报
    • 全双工/半双工
  • UDP/TCP API 的使用
    • UDP API
      • DatagramSocket
        • 构造方法
        • 方法
      • DatagramPacket
        • 构造方法
        • 方法
      • 回显服务器(Echo Server)
        • 1. 接收请求
        • 2. 根据请求计算响应
        • 3. 将响应写回客户端
        • 完整代码

学习多线程,打破了以往对于程序的认知
学习网络编程,将会再次打破对于程序的认知


套接字:Socket 单词
操作系统给应用程序(传输层给应用层)提供的 API,起了个名字,就叫 Socket API

Socket 本身是“插槽”的意思

  • 电脑的主板,插着各种其他的硬件

接下来学习的就是操作系统提供的 Socket API(Java 版本的)

UDP 和 TCP 之间的差别

socket API 提供了两组不同的 APIUDP 有一套,TCP 也有一套


TCP 有连接,可靠传输,面向字节流,全双工
UDP 无连接,不可靠传输,面向数据报,全双工

有连接/无连接

此处谈到的连接,是“抽象”的连接

  • 通信双方,如果保存了通信对端的信息,就相当与是“有连接”;如果不保存对端的信息,就是“无连接
  • 连接:通信双方 A 保存了 B 的信息(IP 和端口号),B 也保存了 A 的信息
  • 如果通信双方,各自把对方的信息删除掉,此时就相当与“断开了连接

举个栗子:

  • 将来你和你的另一半去领证,结婚证上就会写上两个人的名字,贴上照片。一式两份,你保存一份,你的另一半保存一份
  • 你的本上保留了 ta 的信息,你翻开本就能看到另一个人是 ta
  • ta 的本上保留了你的信息,ta 翻开本就能看到另一个人是你
  • 此时你们俩就相当于建立了“抽象的/逻辑上的连接

可靠传输/不可靠传输

此处谈到的“可靠”,不是指 100% 能到达对方,而是 “尽可能”到达对方

  • 因为网络环境非常复杂,存在很多的不确定因素(你再厉害的技术,也抵不过挖掘机一铲子)
    相对来说,不可靠就是完全不考虑数据是否能到达对方

TCP 内置了一些机制,能够保证可靠传输

  1. 感知到对方是不是收到了
  2. 重传机制,在对方没收到的时候进行重试

UDP 则没有这种可靠性机制,完全不管发出去的数据是否顺利到达对方


直观感觉,可靠比不可靠传输更好?

  • 但可靠传输要付出代价,TCP 协议设计就要比 UDP 复杂很多,也会损失一些传输数据的效率

面向字节流/面向数据报

TCP 是面向字节流的,TCP 的传输过程就和文件流/水流是一样的特点

  • 从文件读写 100 个字节
    1. 一次读写 100 字节
    2. 两次,一次读写 50 字节
    3. 十次,一次读写 10 字节
  • TCP 读写,和文件读写是一摸一样的

UDP 是面向数据报的,传输数据的基本单位不是字节,而是“UDP 数据报

  • 一次发送/接收,必须是完整的 UDP 数据报

这些差别,会直接影响到代码的写法

全双工/半双工

全双工:一个通信链路,可以发送数据,也可以接收数据(双向通信)
半双工:一个通信链路,只能发送/只能接收(单向通信)

有一根网线,怎么进行双向通信呢?

  • 全双工这个事情,物理层面上,并非是只有一根线在连接
  • 一根网线里,有 8 根铜线,分成 4 4 一组(四根就可以正常工作,另外四根是防止意外情况发生的铜线备份)
  • 主要的四根线中,两根线用来负责发送,两根用来接收

UDP/TCP API 的使用

UDP API

API 就是一组函数/一组类

DatagramSocket

网卡的遥控器


代表一个 Socket 对象

  • 属于操作系统的概念,Socket 就可以认为是操作系统中,广义的文件里面的一种文件类型
    • 这样的文件,就是网卡/控制台/键盘/显卡…这种硬件设备抽象的表示形式
      • 所以 Socket 也具有一些文件的特性,操作文件需要先打开、再读写、再关闭。Socket 也是这样
      • 包括创建一个 Socket 对象,也会占用一个文件描述符表里面的资源
    • 在这里 Socket 对象,就是网卡的代言人
      • 因为我们通过代码直接操作网卡是不好操作的
      • 网卡有很多种型号,之间提供的 API 都会有差别
      • 于是操作系统就把网卡概念封装成 Socket,应用程序员就不需要关注硬件的差异和细节,直接统一操作 Socket 对象就能间接的操作网卡了
      • Socket 就像万能遥控器一样

构造方法
方法签名方法说明
DatagramSocket ()创建⼀个 UDP 数据报套接字的 Socket,绑定到本机任意⼀个随机端⼝(⼀般⽤于客⼾端)
DatagramSocket (int port)创建⼀个 UDP 数据报套接字的 Socket,绑定到本机指定的端⼝需要指定端口号,⼀般⽤于服务端)
方法
方法签名方法说明
void receive (DatagramPacket p)从此套接字接收数据报(如果没有接收到数据报,该⽅法会阻塞等待)
void send (DatagramPacket p)从此套接字发送数据报包(不会阻塞等待,直接发送)
void close ()关闭此数据报套接字

DatagramPacket

UDP 传输数据的基本单位


代表一个 UDP 数据报

构造方法
方法签名方法说明
DatagramPacket(byte[] buf, int length)构造⼀个 DatagramPacket 以⽤来接收数据报,接收的数据保存在字节数组(第⼀个参数 buf)中,接收指定 ⻓度(第⼆个参数 length
DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)构造⼀个 DatagramPacket 以⽤来发送数据报,发送的数据为字节数组(第⼀个参数 buf)中,从 0 到指定⻓ 度(第⼆个参数 length)。address 指定⽬的主机的 IP 和端⼝号
方法
方法签名方法说明
InetAddress getAddress()从接收的数据报中,获取发送端主机 IP 地址;或从发送的数据报中,获取接收端主机 IP 地址
int getPort()从接收的数据报中,获取发送端主机的端⼝号;或从发送的数据报中,获取接收端主机端口号
byte[] getData()获取数据报中的数据

回显服务器(Echo Server)

最简单的客户端服务器程序,不涉及到业务流程,只是对与 API 的用法做演示

客户端发送什么样的请求,服务器就返回什么样的响应,没有任何业务逻辑,没有进行任何计算或者处理

  • 网络编程必须要使用网卡,就需要用到 Socket 对象
    • 创建一个 DatagramSocket 对象,之后在基于这个对象进行操作
import java.net.DatagramSocket;  
import java.net.SocketException;  public class UdpEchoServer {  private DatagramSocket socket = null;  public UdpEchoServer(int port) throws SocketException {  //SocketException 异常是 IOException 的子类socket = new DatagramSocket(port);  }
}
  • 对于服务器这一端来说,需要在 socket 对象创建的时候,就指定一个端口号 port,作为构造方法的参数
  • 后续服务器开始运行之后,操作系统就会把端口号和该进程关联起来
  • 端口号的作用就是来区分进程的,一台主机上可能有很多个进程很多个程序,都要去操作网络。当我们收到数据的时候,哪个进程来处理,就需要通过端口号去区分
    • 所以就需要在程序一启动的时候,就把这个程序关联哪个端口指明清楚

  • 在调用这个构造方法的过程中,JVM 就会调用系统的 Socket API,完成“端口号-进程”之间的关联动作
    • 这样的操作也叫“绑定端口号”(系统原生 API 名字就叫 bind
    • 绑定好了端口号之后,就明确了端口号和进程之间的关联关系

  • 对于一个系统来说,同一时刻,一个端口号只能被一个进程绑定;但是一个进程可以绑定多个端口号(通过创建多个 Socket 对象来完成)
    • 因为端口号是用来区分进程,收到数据之后,明确说这个数据要给谁,如果一个端口号对应到多个进程,那么就难以起到区分的效果
    • 如果有多个进程,尝试绑定一个端口号,只有一个能绑定成功,后来的都会绑定失败
1. 接收请求
  • 通过 start 来启动服务器的核心流程
  • 对于服务器来说,主要的工作,就是不停地处理客户端发来的请求,因为客户端什么时候会发来请求是未知的,所以要时刻待命
public void start() {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析socket.receive();  }
}
  • 7*24 小时工作的服务器来说,服务器里面有死循环是很正常的,不是说死循环就是代码 bug
  1. 读取客户端的请求并解析
    • receive 是从网卡上读取数据,但是调用 receive 的时候,网卡上不一定就有数据
    • 当调用 start 方法之后程序启动,就立刻调用了 receive,一调用 receive,就会立刻从网卡中读取数据,但这个时候客户端可能还没来,网卡中还没有数据
    • 如果网卡上收到数据了,receive 立刻返回,获取收到的数据;如果没有收到数据,receive 就会阻塞等待,直到真正收到数据为止
    • 此处 receive 也是通过“输出型参数”获取到网卡上收到的数据的
  • receive 的参数是 DatagramPacket
    • 我们就需要构造一个空的 DatagramPacket 对象,将其作为参数传递给 receive
public void start() throws IOException {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析  DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);  socket.receive(requestPacket);  }
}
  • DatagramPacket 自身需要存储数据,但是数据的空间具体多大,需要外部来定义,自身不负责

  • 需要指定 requestPacket 所需要存储数据/持有数据的基数

    • 指定一个字节数组,和其长度
    • 大小没什么讲究,只要能确保能够存储下你通讯的一个数据包即可
  • 收到的请求数据是通过二进制 byte[] 的形式来体现的,而我们后续要将其进行处理,最好将它转成字符串才好处理

public void start() throws IOException {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析  DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);  socket.receive(requestPacket);  //将收到的二进制 byte[] 数据转换成字符串  String request = new String(requestPacket.getData(),0,requestPacket.getLength());  }
}
  • 构造 String 可以基于字节数组构造,也可以基于字符数组进行构造
    • 此处 DatagramPacket 里面持有的就是字节数组,我们就取出里面包含的字节数
    • 此处就指定了:是哪个字节数组、从哪开始构造、构造多长
2. 根据请求计算响应
  • 请求(request):客户端主动给服务器发起的数据
  • 响应(response):服务器给客户端返回的数据

此处是一个回显服务器,响应就是请求

public void start() throws IOException {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析  DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);  socket.receive(requestPacket);  //将收到的二进制 byte[] 数据转换成字符串  String request = new String(requestPacket.getData(),0,requestPacket.getLength());  //2. 根据请求计算响应  String response = process(request);  }
}  //请求是什么,响应就是什么  
private String process(String request) {  return request;  
}
3. 将响应写回客户端

此时需要主动的将数据通过网卡发送回客户端

  • receive 相似, send 的参数是 DatagramPacket
    • 我们就需要构造一个 DatagramPacket 对象,将其作为参数传递给 send
    • 但此时不能使用空的数组来构造 DatagramPacket 对象
    • 需要使用刚刚的 response 数据进行构造
public void start() throws IOException {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析  DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);  socket.receive(requestPacket);  //将收到的二进制 byte[] 数据转换成字符串  String request = new String(requestPacket.getData(),0,requestPacket.getLength());  //2. 根据请求计算响应  String response = process(request);  //3. 把响应写回到客户端  DatagramPacket responsePacket = new DatagramPacket(response.getBytes(),response.getBytes().length,  requestPacket.getSocketAddress());  socket.send(responsePacket);  }
}  //请求是什么,响应就是什么  
private String process(String request) {  return request;  
}
  • String 可以基于字节数组来构造,也可以随时取出里面的字节数组
  • response.getBytes().length 不能写成 response.length
    • 前者是在获取字节数组,得到字节数组的长度,单位是“字节
    • 后者是在获取字符串中字符的个数,单位是“字符
  • UDP 有一个特点——无连接
    • 所谓的连接,就是通信双方保存对方的信息(IP+端口号)
    • 就是说 DatagramSocket 这个对象中,不持有对方(客户端)和 IP 端口的,进行 send 的时候,就需要在 send 的数据包里,把要“发给谁”这样的信息,写进去,才能够正确的把数据进行返回
    • 所以要将信息也作为参数,传入 responsePacket
      • 客户端刚才给服务器发了一个请求 requestPacket,这个包记录了这个数据是从哪来,从哪来就让它回哪去,所以直接获取这个 requestPacket 的信息就可以了
      • 客户端的 IP 和端口就都包含在 requestPacket.getSocketAddress()
      • 后续往外发送数据包的时候,就知道该发去哪了 image.png|390>- 相比之下,TCP 代码中,因为 TCP 是有连接的,则无需关心对端的 IP 和端口,只管发送数据即可
  • 如果字符串里都是英文字母/阿拉伯数字/英文标点符号的话,都是 ASCII 编码的,一个字符也就是一个字节这么长
  • 如果字符串里有中文,是 UTF8 编码的,一个中文就是 3 个字节
  • UTF8 也是能兼容 ASCII,当使用 UTF8 表示英文的时候,和 ASCII 表示英文是完全相同的
完整代码
import java.io.IOException;  
import java.net.DatagramPacket;  
import java.net.DatagramSocket;  
import java.net.SocketException;  public class UdpEchoServer {  private DatagramSocket socket = null;  public UdpEchoServer(int port) throws SocketException {  socket = new DatagramSocket(port);  }  public void start() throws IOException {  System.out.println("服务器启动!");  //通过一个死循环来不停地处理请求  while(true) {  //1. 读取客户端的请求并解析  DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);  socket.receive(requestPacket);  //将收到的二进制 byte[] 数据转换成字符串  String request = new String(requestPacket.getData(),0,requestPacket.getLength());  //2. 根据请求计算响应  String response = process(request);  //3. 把响应写回到客户端  DatagramPacket responsePacket = new DatagramPacket(response.getBytes(),response.getBytes().length,  requestPacket.getSocketAddress());  socket.send(responsePacket);  //4. 打印日志  System.out.printf("[%s:%d req=%s, res=%s\n",requestPacket.getAddress(),requestPacket.getPort(),request,response);  }    }  //请求是什么,响应就是什么  private String process(String request) {  return request;  }  public static void main(String[] args) throws IOException {  UdpEchoServer server = new UdpEchoServer(9090);  server.start();  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/52144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

黑马头条vue2.0项目实战(十一)——功能优化(组件缓存、响应拦截器、路由跳转与权限管理)

1. 组件缓存 1.1 介绍 先来看一个问题? 从首页切换到我的,再从我的回到首页,我们发现首页重新渲染原来的状态没有了。 首先,这是正常的状态,并非问题,路由在切换的时候会销毁切出去的页面组件&#xff…

Java之HashMap的底层实现

Java之HashMap的底层实现 摘要HashMap的底层原理哈希值转换为数组下标节点初始化put(Object key, Object value)重写toString()get(Object key)增加泛化remove(K key) 摘要 本博客主要讲述了Java的HashMap的底层实现 HashMap的底层原理 底层原理:数组链表 过程…

【C/C++】菱形继承问题

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

【JAVA CORE_API】Day18 网络编程、线程、在线聊天室v1.0

C/S&#xff1a;客户端/服务器端&#xff0c;所有网络应用都是基于客户端服务器端进行的&#xff0c;Java写的是服务端&#xff0c;客户端是一个软件&#xff0c;服务端也是一个软件&#xff0c;两个软件之间交互&#xff1b;&#xff08;只能连接对应的服务器&#xff09; B/…

吐血整理 ChatGPT 3.5/4.0/4o 新手使用手册~

都知道ChatGPT很强大&#xff0c;聊聊天、写论文、搞翻译、写代码、写文案、审合同等等&#xff0c;无所不能~ 那么到底怎么使用呢&#xff1f;其实很简单了&#xff0c;国内AI产品发展也很快&#xff0c;很多都很好用了~ 我一直在用&#xff0c;建议收藏下来~ 有最先进、最…

基于 Appium 的 App 爬取实战

除了运行 Appium 的基本条件外&#xff0c;还要一个日志输出库 安装&#xff1a; pip install loguru 思路分析 首先我们观察一下整个 app5 的交互流程&#xff0c;其首页分条显示了电影数据&#xff0c; 每个电影条目都包括封面&#xff0c;标题&#xff0c; 类别和评分 4…

Godot《躲避小兵》实战之创建玩家场景

项目设置完之后&#xff0c;我们就可以开始处理玩家控制的角色。 这里我们将玩家放在一个单独的场景当中&#xff0c;这样做的好处是在游戏的其他部分做出来之前&#xff0c;我们就可以对其进行单独测试。 节点结构 场景是一个节点树结构&#xff0c;因此一个场景需要有一个…

WordPress美化节日灯笼插件,适合春节的时候使用

源码介绍&#xff1a; WordPress美化节日灯笼插件&#xff0c;适合每年过年的时候安在网站上使用&#xff0c;这款插件可以备用着&#xff0c;一款WordPress节日灯笼美化插件&#xff0c;可以给网页自动加一个灯笼效果使用说明&#xff1a;到网站WP后台 - 插件 - 安装插件 - 上…

[C#]基于winform结合photocartoon算法实现人物卡通化源码实现

【官方框架】 https://github.com/minivision-ai/photo2cartoon 简介 人像卡通风格渲染的目标是&#xff0c;在保持原图像ID信息和纹理细节的同时&#xff0c;将真实照片转换为卡通风格的非真实感图像。我们的思路是&#xff0c;从大量照片/卡通数据中习得照片到卡通画的映射…

企业级web应用服务器tomcat

目录 一、Web技术 1.1 HTTP协议和B/S 结构 1.2 前端三大核心技术 1.2.1 HTML 1.2.2 CSS&#xff08;Cascading Style Sheets&#xff09;层叠样式表 1.2.3 JavaScript 二、tomcat的功能介绍 2.1 安装 tomcat 环境准备 2.1.1 安装java环境 2.1.2 安装并启动tomcat …

vscode提升:JSON 中不允许有注释

解决方案 &#xff1a; 运行&#xff1a; json with comment 参考链接&#xff1a; https://blog.csdn.net/eqizhihui/article/details/134014010 人工智能学习网站 https://chat.xutongbao.top

基于飞腾平台的Hbase的安装配置

【写在前面】 飞腾开发者平台是基于飞腾自身强大的技术基础和开放能力&#xff0c;聚合行业内优秀资源而打造的。该平台覆盖了操作系统、算法、数据库、安全、平台工具、虚拟化、存储、网络、固件等多个前沿技术领域&#xff0c;包含了应用使能套件、软件仓库、软件支持、软件适…

iOS Native与JS通信:JSBridge

文章目录 一、简介二、JS 调用 Native1.使用 URL Schemea.UIWebViewb.WKWebView 2.使用 JavaScriptCore (iOS 7)3.使用 WKWebView 和 WKScriptMessageHandler (iOS 8) 三、Native 调用 JS1.使用 UIWebView2.使用 WKWebView3.使用 JavaScriptCore (iOS 7) 一、简介 对于移动应用…

深入浅出:你需要了解的用户数据报协议(UDP)

文章目录 **UDP概述****1. 无连接性****2. 尽最大努力交付****3. 面向报文****4. 多种交互通信支持****5. 较少的首部开销** **UDP报文的首部格式****详细解释每个字段** **UDP的多路分用模型****多路分用的实际应用** **检验和的计算方法****伪首部的详细内容****检验和计算步…

Python 数据分析之Numpy学习(一)

Python 数据分析之Numpy学习&#xff08;一&#xff09; 一、Numpy的引入 1.1 矩阵/向量的按位运算 需求&#xff1a;矩阵的按位相加 [0,1,4] [0,1,8] [0,2,12] 1.1.1 利用python实现矩阵/向量的按位运算 # 1.通过列表实现 list1 [0, 1, 4] list2 [0, 1, 8]# 列表使用…

iOS 18 Beta 5:苹果的细腻之笔,绘制用户体验新画卷

在苹果的世界里&#xff0c;每一次系统更新都是对用户体验进行的一次精心雕琢。 随着iOS 18 Beta 5的上线&#xff0c;苹果带来了一系列令人耳目一新的功能&#xff0c;同时也在系统的每个细微之处展现了对完美的追求。 Safari浏览器的“干扰控制”功能 在今天信息充斥的数字…

SpringBoot接入高德地图猎鹰轨迹服务API

SpringBoot接入高德地图猎鹰轨迹服务API 一、AP文档 猎鹰轨迹服务API文档 二、页面图 1、需登录账号&#xff0c;申请对应的应用key值 三、代码部分&#xff1a; 1、控制层 RestController RequestMapping("/gdTrack") public class TrackController {private …

搜维尔科技:【研究】Haption Virtuose外科手术触觉视觉学习系统的开发和评估

Haption面临挑战 除此之外&#xff0c;外科医生有时会对骨组织进行非常复杂的手术&#xff0c;其中一个例子是人工耳蜗的手术植入。重要的是要避免神经或血管等危险结构受伤&#xff0c;并尽可能轻柔地进行手术。在外科医生能够安全、无差错地进行此类手术之前&#xff0c;需要…

Flink常见数据源使用教程(DataStream API)

前言 一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几部分构成,如下图所示: 获取执行环境(execution environment)读取数据源(source)定义基于数据的转换操作(transformations)定义计算结果的输出位置(sink)触发程序执行(exec…

鸿蒙HarmonOS实战开发: CMake脚本编写构建NDK工程

NDK工程构建 HarmonyOS NDK默认使用CMake作为构建系统&#xff0c;随包提供了符合HarmonyOS工具链的基础配置文件ohos.toolchain.cmake&#xff0c;用于预定义CMake变量来简化开发者配置。 常用的NDK工程构建方式有&#xff1a; 从源码构建 源码构建也有不同方式&#xff1a;…