基于图像处理的滑块验证码匹配技术

滑块验证码是一种常见的验证码形式,通过拖动滑块与背景图像中的缺口进行匹配,验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术,并提供优化代码以提高滑块位置偏移量的准确度,尤其是在背景图滑块阴影较浅的情况下。

一、背景知识

1.1 图像处理概述

图像处理是指对图像进行分析和操作,以达到增强图像、提取特征、识别模式等目的。常用的图像处理技术包括高斯模糊、Canny 边缘检测、轮廓提取等。

1.2 滑块验证码的原理

滑块验证码通过用户拖动滑块,使滑块图像与背景图像中的缺口对齐,从而验证用户的操作。实现滑块验证码匹配的关键在于精确检测背景图像中缺口的位置。

二、技术实现

2.1 代码实现

import base64
import os
from datetime import datetime
from typing import Union, Optionalimport cv2
import numpy as npclass SliderCaptchaMatch:def __init__(self,gaussian_blur_kernel_size=(5, 5),gaussian_blur_sigma_x=0,canny_threshold1=200,canny_threshold2=450,save_images=False,output_path=""):"""初始化SlideMatch类:param gaussian_blur_kernel_size: 高斯模糊核大小,默认(5, 5):param gaussian_blur_sigma_x: 高斯模糊SigmaX,默认0:param canny_threshold1: Canny边缘检测阈值1,默认200:param canny_threshold2: Canny边缘检测阈值2,默认450:param save_images: 是否保存过程图片,默认False:param output_path: 生成图片保存路径,默认当前目录"""self.GAUSSIAN_BLUR_KERNEL_SIZE = gaussian_blur_kernel_sizeself.GAUSSIAN_BLUR_SIGMA_X = gaussian_blur_sigma_xself.CANNY_THRESHOLD1 = canny_threshold1self.CANNY_THRESHOLD2 = canny_threshold2self.save_images = save_imagesself.output_path = output_pathdef _remove_alpha_channel(self, image):"""移除图像的alpha通道:param image: 输入图像:return: 移除alpha通道后的图像"""if image.shape[2] == 4:  # 如果图像有alpha通道alpha_channel = image[:, :, 3]rgb_channels = image[:, :, :3]# 创建一个白色背景white_background = np.ones_like(rgb_channels, dtype=np.uint8) * 255# 使用alpha混合图像与白色背景alpha_factor = alpha_channel[:, :, np.newaxis] / 255.0image_no_alpha = rgb_channels * alpha_factor + white_background * (1 - alpha_factor)return image_no_alpha.astype(np.uint8)else:return imagedef _get_gaussian_blur_image(self, image):"""对图像进行高斯模糊处理:param image: 输入图像:return: 高斯模糊处理后的图像"""return cv2.GaussianBlur(image, self.GAUSSIAN_BLUR_KERNEL_SIZE, self.GAUSSIAN_BLUR_SIGMA_X)def _get_canny_image(self, image):"""对图像进行Canny边缘检测:param image: 输入图像:return: Canny边缘检测后的图像"""return cv2.Canny(image, self.CANNY_THRESHOLD1, self.CANNY_THRESHOLD2)def _get_contours(self, image):"""获取图像的轮廓:param image: 输入图像:return: 轮廓列表"""contours, _ = cv2.findContours(image, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)return contoursdef _get_contour_area_threshold(self, image_width, image_height):"""计算轮廓面积阈值:param image_width: 图像宽度:param image_height: 图像高度:return: 最小和最大轮廓面积阈值"""contour_area_min = (image_width * 0.15) * (image_height * 0.25) * 0.8contour_area_max = (image_width * 0.15) * (image_height * 0.25) * 1.2return contour_area_min, contour_area_maxdef _get_arc_length_threshold(self, image_width, image_height):"""计算轮廓弧长阈值:param image_width: 图像宽度:param image_height: 图像高度:return: 最小和最大弧长阈值"""arc_length_min = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 0.8arc_length_max = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 1.2return arc_length_min, arc_length_maxdef _get_offset_threshold(self, image_width):"""计算偏移量阈值:param image_width: 图像宽度:return: 最小和最大偏移量阈值"""offset_min = 0.2 * image_widthoffset_max = 0.85 * image_widthreturn offset_min, offset_maxdef _is_image_file(self, file_path: str) -> bool:"""检查字符串是否是有效的图像文件路径"""valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')return os.path.isfile(file_path) and file_path.lower().endswith(valid_extensions)def _is_base64(self, s: str) -> bool:"""检查字符串是否是有效的 base64 编码"""try:if isinstance(s, str):# Strip out data URI scheme if presentif "data:" in s and ";" in s:s = s.split(",")[1]base64.b64decode(s)return Truereturn Falseexcept Exception:return Falsedef _read_image(self, image_source: Union[str, bytes], imread_flag: Optional[int] = None) -> np.ndarray:"""读取图像:param image_source: 图像路径或base64编码:param imread_flag: cv2.imread 和 cv2.imdecode 的标志参数 (默认: None):return: 读取的图像"""if isinstance(image_source, str):if self._is_image_file(image_source):  # 如果是文件路径if imread_flag is not None:return cv2.imread(image_source, imread_flag)else:return cv2.imread(image_source)elif self._is_base64(image_source):  # 如果是 base64 编码# 剥离数据URI方案(如果存在)if "data:" in image_source and ";" in image_source:image_source = image_source.split(",")[1]img_data = base64.b64decode(image_source)img_array = np.frombuffer(img_data, np.uint8)if imread_flag is not None:image = cv2.imdecode(img_array, imread_flag)else:image = cv2.imdecode(img_array, cv2.IMREAD_UNCHANGED)if image is None:raise ValueError("Failed to decode base64 image")return imageelse:raise ValueError("The provided string is neither a valid file path nor a valid base64 string")else:raise ValueError("image_source must be a file path or base64 encoded string")def get_slider_offset(self, background_source: Union[str, bytes], slider_source: Union[str, bytes],out_file_name: str = None) -> int:"""获取滑块的偏移量:param background_source: 背景图像路径或base64编码:param slider_source: 滑块图像路径或base64编码:param out_file_name: 输出图片的文件名: 默认为当前时间戳:return: 滑块的偏移量"""background_image = self._read_image(background_source)slider_image = self._read_image(slider_source, cv2.IMREAD_UNCHANGED)out_file_name = out_file_name if out_file_name else datetime.now().strftime('%Y%m%d%H%M%S.%f')[:-3]if background_image is None:raise ValueError("Failed to read background image")if slider_image is None:raise ValueError("Failed to read slider image")slider_image_no_alpha = self._remove_alpha_channel(slider_image)image_height, image_width, _ = background_image.shapeimage_gaussian_blur = self._get_gaussian_blur_image(background_image)image_canny = self._get_canny_image(image_gaussian_blur)contours = self._get_contours(image_canny)if self.save_images:# 创建输出目录if not os.path.exists(self.output_path):os.makedirs(self.output_path)cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_canny.png'), image_canny)cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_gaussian_blur.png'), image_gaussian_blur)contour_area_min, contour_area_max = self._get_contour_area_threshold(image_width, image_height)arc_length_min, arc_length_max = self._get_arc_length_threshold(image_width, image_height)offset_min, offset_max = self._get_offset_threshold(image_width)offset = Nonefor contour in contours:x, y, w, h = cv2.boundingRect(contour)if contour_area_min < cv2.contourArea(contour) < contour_area_max and \arc_length_min < cv2.arcLength(contour, True) < arc_length_max and \offset_min < x < offset_max:cv2.rectangle(background_image, (x, y), (x + w, y + h), (0, 0, 255), 2)offset = x# 匹配滑块模板在背景中的位置result = cv2.matchTemplate(background_image, slider_image_no_alpha, cv2.TM_CCOEFF_NORMED)_, _, _, max_loc = cv2.minMaxLoc(result)slider_x, slider_y = max_locoffset = slider_xcv2.rectangle(background_image, (slider_x, slider_y),(slider_x + slider_image_no_alpha.shape[1], slider_y + slider_image_no_alpha.shape[0]),(255, 0, 0), 2)if self.save_images:cv2.imwrite(os.path.join(self.output_path, f'{out_file_name}_image_label.png'), background_image)return offset

2.2 代码说明

  • 图像预处理:通过高斯模糊和Canny边缘检测增强图像的对比度和亮度,提高滑块识别率。
  • 多图像融合:通过多次处理图像并融合结果,以减小噪声对检测结果的影响。
  • 动态调整阈值:根据图像的直方图动态调整Canny边缘检测的阈值,提高对不同图像的适应性。
  • 轮廓检测:通过 _get_contours 函数获取图像的轮廓,并根据轮廓面积和弧长进行筛选。
  • 滑块匹配:通过模板匹配方法 cv2.matchTemplate 匹配滑块在背景图中的位置。

2.3 优化策略

  • 对比度和亮度增强:通过提高图像的对比度和亮度,使得滑块和背景的区别更加明显,增强滑块匹配的准确度。
  • 多图像融合:融合多张处理后的图像,减小单张图像中的噪声对结果的影响。
  • 动态调整参数:根据图像内容动态调整Canny边缘检测的阈值,使得算法对不同类型的图像都有较好的适应性。

2.4 安装依赖

要运行上述代码,需要安装以下 Python 库:

pip install numpy opencv-python slider_captcha_match

2.5 使用方法

在安装完所需库后,您可以按照以下步骤使用滑块验证码匹配功能:

  1. 初始化SliderCaptchaMatch类:配置高斯模糊、Canny边缘检测等参数。
  2. 读取背景图像和滑块图像:可以是文件路径或base64编码。
  3. 获取滑块偏移量:调用get_slider_offset函数,返回滑块的准确偏移量。
from slider_captcha_match import SliderCaptchaMatchfrom datetime import datetimeimport cv2# 初始化 SliderCaptchaMatch 类slider_captcha_match = SliderCaptchaMatch(save_images=True,output_path="output")# 读取背景图像和滑块图像background_source = "path_to_background_image.jpg"slider_source = "path_to_slider_image.png"# 获取滑块偏移量offset = slider_captcha_match.get_slider_offset(background_source, slider_source)print(f"滑块偏移量: {offset}")# 输出结果保存路径out_file_name = datetime.now().strftime('%Y%m%d%H%M%S.%f')[:-3]print(f"结果图像保存路径: output/{out_file_name}_image_label.png")

三、测试与验证

为了验证优化后的滑块验证码匹配技术,进行多次测试,比较不同情况下的滑块偏移量检测结果,并记录背景图、滑块图、中间预处理图和代码标注的滑块位置的图,以及缺口坐标位置偏移量计算。

Response for row 1: offset(手动标注)=155;缺口坐标(代码计算)=155.0

 

Response for row 2: offset(手动标注)=119;缺口坐标(代码计算)=118.5


Response for row 2: offset(手动标注)=223;缺口坐标(代码计算)=224.0

四、总结

本文介绍了基于图像处理的滑块验证码匹配技术,并通过多种优化策略提高了滑块位置偏移量的检测准确度。通过对图像进行预处理、融合多张图像、动态调整阈值等方法,可以有效提高滑块验证码在不同背景下的识别率。希望这篇文章能够对从事图像处理和验证码研究的读者有所帮助。

参考资料

  1. OpenCV 官方文档
  2. NumPy 官方文档
  3. 本Github项目源码地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/41546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模拟,CF 570C - Replacement

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 570C - Replacement 二、解题报告 1、思路分析 1、长为cnt的连续串的最小操作次数为cnt - 1 2、每次将一个非. 替换为. f要么增加1要么增加2 只有前后都是 . 的时候会增加2 同理&#xff0c;当我们将一…

STM32外扩SRAM及用法

一.概述 一般单片机有片内的RAM&#xff0c;但都不多&#xff0c;比如&#xff1a;STM32F407ZGT6 自带了 192K 字节的 RAM&#xff0c;对一般应用来说&#xff0c;已经足够了&#xff0c;不过在一些对内存要求高的场合&#xff0c;比如做华丽效果的 GUI&#xff0c;处理大量数据…

swagger的接口文档导入到yapi上

一、访问swagger接口 swagger集成到项目后&#xff0c;通过http:\\ip:port/swagger-ui.html 访问。 说明&#xff1a;这里的路径是基于swagger2。如果用swagger3&#xff0c;需要用swagger3的路径进行访问。 访问如图&#xff1a; 这就是swagger接口首页。如果想导入到yapi上…

AI绘画Stable Diffusion 新手入门教程:万字长文解析Lora模型的使用,快速上手Lora模型!

大家好&#xff0c;我是设计师阿威 今天给大家讲解一下AI绘画Stable Diffusion 中的一个重要模型—Lora模型&#xff0c;如果还有小伙伴没有SD安装包的&#xff0c;可以看我往期入门教程2024最新超强AI绘画Stable Diffusion整合包安装教程&#xff0c;零基础入门必备&#xff…

三叶青图像识别研究简概

三叶青图像识别研究总概 文章目录 前言一、整体目录介绍二、前期安排三、构建图像分类数据集四、模型训练准备五、迁移学习模型六、在测试集上评估模型精度七、可解释性分析、显著性分析八、图像分类部署九、树莓派部署十、相关补充总结 前言 本系列文章为近期所做项目研究而作…

工作助手VB开发笔记(2)

今天继续讲功能 2.功能 2.9开机自启 设置程序随windows系统启动&#xff0c;其实就是就是将程序加载到注册表 Public Sub StartRunRegHKLM()REM HKEY_LOCAL_MACHINE \ SOFTWARE \ WOW6432Node \ Microsoft \ Windows \ CurrentVersion \ RunDim strName As String Applicat…

教师商调函流程详解

作为一名教师&#xff0c;您是否曾面临过工作调动的困惑&#xff1f;当您决定迈向新的教育环境&#xff0c;是否清楚整个商调函流程的每一个细节&#xff1f;今天&#xff0c;就让我们一起来探讨这一过程&#xff0c;确保您能够顺利地完成工作调动。 首先需要确定新调入的学校已…

CSDN导入本地md文件图片不能正常回显问题

标题 搭建图像仓库获取图片URL 路径替换 因为服务器读取不到本地图片&#xff0c;故不能正常回显&#xff0c;因此想要正常回显图片&#xff0c;我们首先要做的就是搭建一个可以存放图片的服务器&#xff0c;像你可以选择购买一个云服务器、FastDFS图片服务器、Minio多云对象存…

娱乐圈惊爆已婚男星刘端端深夜幽会

【娱乐圈惊爆&#xff01;已婚男星刘端端深夜幽会&#xff0c;竟是《庆余年》二皇子“戏外风云”】在这个信息爆炸的时代&#xff0c;娱乐圈的每一次风吹草动都能瞬间点燃公众的热情。今日&#xff0c;知名娱乐博主刘大锤的一则预告如同投入湖中的巨石&#xff0c;激起了层层涟…

纸电混合阶段,如何在线上实现纸电会档案的协同管理?

随着国家政策的出台和引导&#xff0c;电子会计档案的管理越来越规范&#xff0c;电子会计档案建设成为打通财务数字化最后一公里的重要一环。但是&#xff0c;当前很多企业的财务管理仍处于电子档案和纸质档案并行的阶段&#xff0c;如何能将其建立合理清晰关联&#xff0c;统…

《数字图像处理-OpenCV/Python》第17章:图像的特征描述

《数字图像处理-OpenCV/Python》第17章&#xff1a;图像的特征描述 本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 第17章&#xff1a;图像的特征描述 特征检测与匹配是计算机视觉的…

javascript v8编译器的使用记录

我的机器是MacOS Mx系列。 一、v8源码下载构建 1.1 下载并更新depot_tools git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git export PATH/path/to/depot_tools:$PATH 失败的话可能是网络问题&#xff0c;可以试一下是否能ping通&#xff0c;连…

imx6ull/linux应用编程学习(11)CAN应用编程基础

关于裸机的can通信&#xff0c;会在其他文章发&#xff0c;这里主要讲讲linux上的can通信。 与I2C,SPI等同步通讯方式不同&#xff0c;CAN通讯是异步通讯&#xff0c;也就是没有时钟信号线来保持信号接收同步&#xff0c;也就是所说的半双工&#xff0c;无法同时发送与接收&…

EasyExcel 单元格根据图片数量动态设置宽度

在使用 EasyExcel 导出 Excel 时&#xff0c;如果某个单元格是图片内容&#xff0c;且存在多张图片&#xff0c;此时就需要单元格根据图片数量动态设置宽度。 经过自己的研究和实验&#xff0c;导出效果如下&#xff1a; 具体代码如下&#xff1a; EasyExcel 版本 <depen…

Python爬虫零基础实战,简洁实用!

1.爬虫简介 简单来讲&#xff0c;爬虫就是一个探测机器&#xff0c;它的基本操作就是模拟人的行为去各个网站溜达&#xff0c;点点按钮&#xff0c;查查数据&#xff0c;或者把看到的信息背回来。就像一只虫子在一幢楼里不知疲倦地爬来爬去。 你可以简单地想象&#xff1a;每个…

Hadoop的namenode启动不起来

1、 排查原因 Initialization failed for Block pool (Datanode Uuid a5d441af-d074-4758-a3ff-e1563b709267) service to node1/192.168.88.101:8020. Exiting. java.io.IOException: Incompatible clusterIDs in /data/dn: namenode clusterID CID-674c5515-3fe1-4a9c-881d…

四端口千兆以太网交换机与 SFP 扩展功能

在数字化时代&#xff0c;网络基础设施的重要性日益凸显&#xff0c;它是企业和个人取得成功的关键支撑。配备 SFP 插槽的 4 端口千兆以太网交换机提供了一种灵活且可扩展的网络解决方案&#xff0c;能够应对快速的数据传输、低延迟以及不断增长的带宽需求。本篇文章深入探讨了…

大厂都在加急招人的大模型LLM,到底怎么学?

大模型如何入坑&#xff1f; 想要完全了解大模型&#xff0c;你首先要了解市面上的LLM大模型现状&#xff0c;学习Python语言、Prompt提示工程&#xff0c;然后深入理解Function Calling、RAG、LangChain 、Agents等 很多人不知道想要自学大模型&#xff0c;要按什么路线学&a…

【网络安全】第4讲 身份认证技术(笔记)

一、身份认证技术概述 1、身份认证 是网络安全的第一道防线。是最基本的安全服务&#xff0c;其他的安全服务都依赖于它。在物联网应用系统中&#xff0c;身份认证也是整个物联网应用层信息安全体系的基础。 2、基本身份认证技术 &#xff08;1&#xff09;双方认证 是一种双…

人员定位系统在监狱中的应用也同样重要!

监狱管理应用人员定位系统怎么样&#xff1f;新锐科创告诉你&#xff0c;人员定位系统在监狱中的应用也是很重要的&#xff0c;运用这种新型的定位系统&#xff0c;来起到管理监狱人员的作用。 人员定位系统 在监狱中&#xff0c;关押着大量的犯人&#xff0c;所以&#xff0c…