高效管理 TensorFlow 2 GPU 显存的实用指南

前言

在使用 TensorFlow 2 进行训练或预测时,合理管理 GPU 显存至关重要。未能有效管理和释放 GPU 显存可能导致显存泄漏,进而影响后续的计算任务。在这篇文章中,我们将探讨几种方法来有效释放 GPU 显存,包括常规方法和强制终止任务时的处理方法。

一、常规显存管理方法
1. 重置默认图

在每次运行新的 TensorFlow 图时,通过调用 tf.keras.backend.clear_session() 来清除当前的 TensorFlow 图和释放内存。

import tensorflow as tf
tf.keras.backend.clear_session()
2. 限制 GPU 显存使用

通过设置显存使用策略,可以避免 GPU 显存被占用过多。

  • 按需增长显存使用

    import tensorflow as tfgpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:try:for gpu in gpus:tf.config.experimental.set_memory_growth(gpu, True)except RuntimeError as e:print(e)
    
  • 限制显存使用量

    import tensorflow as tfgpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:try:tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)])  # 限制为 4096 MBexcept RuntimeError as e:print(e)
    
3. 手动释放 GPU 显存

在训练或预测结束后,使用 gc 模块和 TensorFlow 的内存管理函数手动释放 GPU 显存。

import tensorflow as tf
import gctf.keras.backend.clear_session()
gc.collect()
4. 使用 with 语句管理上下文

在训练或预测代码中使用 with 语句,可以自动管理资源释放。

import tensorflow as tfdef train_model():with tf.device('/GPU:0'):model = tf.keras.models.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(32,)),tf.keras.layers.Dense(10, activation='softmax')])model.compile(optimizer='adam', loss='categorical_crossentropy')# 假设 X_train 和 y_train 是训练数据model.fit(X_train, y_train, epochs=10)train_model()
二、强制终止任务时的显存管理

有时我们需要强制终止 TensorFlow 任务以释放 GPU 显存。这种情况下,使用 Python 的 multiprocessing 模块或 os 模块可以有效地管理资源。

1. 使用 multiprocessing 模块

通过在单独的进程中运行 TensorFlow 任务,可以在需要时终止整个进程以释放显存。

import multiprocessing as mp
import tensorflow as tf
import timedef train_model():model = tf.keras.models.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(32,)),tf.keras.layers.Dense(10, activation='softmax')])model.compile(optimizer='adam', loss='categorical_crossentropy')# 假设 X_train 和 y_train 是训练数据model.fit(X_train, y_train, epochs=10)if __name__ == '__main__':p = mp.Process(target=train_model)p.start()time.sleep(60)  # 例如,等待60秒p.terminate()p.join()  # 等待进程完全终止
2. 使用 os 模块终止进程

通过获取进程 ID 并使用 os 模块,可以强制终止 TensorFlow 进程。

import os
import signal
import tensorflow as tf
import multiprocessing as mpdef train_model():pid = os.getpid()with open('pid.txt', 'w') as f:f.write(str(pid))model = tf.keras.models.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(32,)),tf.keras.layers.Dense(10, activation='softmax')])model.compile(optimizer='adam', loss='categorical_crossentropy')# 假设 X_train 和 y_train 是训练数据model.fit(X_train, y_train, epochs=10)if __name__ == '__main__':p = mp.Process(target=train_model)p.start()time.sleep(60)  # 例如,等待60秒with open('pid.txt', 'r') as f:pid = int(f.read())os.kill(pid, signal.SIGKILL)p.join()

总结

在使用 TensorFlow 2 进行训练或预测时,合理管理和释放 GPU 显存至关重要。通过重置默认图、限制显存使用、手动释放显存以及使用 with 语句管理上下文,可以有效地避免显存泄漏问题。在需要强制终止任务时,使用 multiprocessing 模块和 os 模块可以确保显存得到及时释放。通过这些方法,可以确保 GPU 资源的高效利用,提升计算任务的稳定性和性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/40387.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【FFmpeg】avcodec_open2函数

目录 1. avcodec_open21.1 编解码器的预初始化(ff_encode_preinit & ff_decode_preinit)1.2 编解码器的初始化(init)1.3 释放编解码器(ff_codec_close) FFmpeg相关记录: 示例工程&#xff…

Windows编程之多线程事件对象(Event Object)用法详解

目录 一、前言 二、基础用法 三、API详解 1.创建事件对象 2控制事件状态 3.等待事件对象: 四、实战案例 1.案例描述 2.代码设计 3.总设计代码 4.运行结果 一、前言 事件对象(Event Object)是我们在大型项目中,进行多线…

竞赛选题 医学大数据分析 - 心血管疾病分析

文章目录 1 前言1 课题背景2 数据处理3 数据可视化4 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于大数据的心血管疾病分析 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! &#x1f9…

AI绘画Stable Diffusion 解锁精美壁纸创作:利用SD与LLM定制你的专属壁纸,AI副业变现指南!

大家好,我是画画的小强 今天给大家分享一下用AI绘画Stable Diffusion 制作精美手机壁纸,这也可能是当前最快AIGC变现的一种途径。虽然本文的主题为手机壁纸,当调整不同的比例的分辨率宽高比例,就可以直接复用到手机、电脑和平板、…

旋转和镜像的关系

旋转矩阵行列式与 在E(3)三维空间中,旋转矩阵的行列式可以用来判断该旋转是否包含镜像变换。 行列式为正: 表示纯旋转,不包含镜像。 旋转矩阵保持向量的长度和角度不变,只是改变向量的方向。 行列式为负: 表示旋转…

机器学习原理之 -- 支持向量机分类:由来及原理详解

支持向量机(Support Vector Machine, SVM)是统计学习理论的一个重要成果,广泛应用于分类和回归问题。SVM以其高效的分类性能和良好的泛化能力在机器学习领域中占据重要地位。本文将详细介绍支持向量机的由来、基本原理、构建过程及其优缺点。…

LVS负载均衡群集部署之——DR模式的介绍及搭建步骤

一、LVS-DR集群介绍1.1 LVS-DR 工作原理1.2 数据包流向分析1.3 LVS-DR 模式的特点1.4 LVS-DR中的ARP问题1.4.1 问题一1.4.2 问题二二、构建LVS-DR集群2.1 构建LVS-DR集群的步骤(理论)1.配置负载调度器(192.168.80.30)(…

5分钟教你用AI把老照片动起来,别再去花49块9的冤枉钱了

文章目录 需要的工具 最近,AI视频在各大平台上,又火了。 只是火的形式,变成了将老照片动起来,打情感牌,或者做很多经典电视剧的再整活。 直接把可灵的生成时间,从以前的4分钟,生生的干成了20分钟…

鸿蒙应用笔记

安装就跳过了,一直点点就可以了 配置跳过,就自动下了点东西。 鸿蒙那个下载要12g个内存,大的有点吓人。 里面跟idea没区别 模拟器或者真机运行 真机要鸿蒙4.0,就可以实机调试 直接在手机里面跑,这个牛逼&#xf…

国标GB/T 28181详解:国标GBT28181-2022 SIP服务器发起广播的命令流程

目录 一、定义 二、作用 1、实现信息的集中管理和分发 (1)信息集中 (2)信息分发 2、提高信息传输的可靠性和效率 (1)可靠性 (2)提高效率 3、支持多种设备和系统的互通 &am…

mongdb学习与使用

1. 基础概念 MongoDB简介: MongoDB是一个基于文档的NoSQL数据库,具有高性能、高可用性和易扩展性。数据存储在类似JSON的BSON格式中。 基本术语: Database(数据库): 集合的容器。Collection(集合…

国产强大免费WAF, 社区版雷池动态防护介绍

雷池WAF,基于智能语义分析的下一代 Web 应用防火墙 使用情况 我司于2023年4月23日对雷池进行测试,测试一个月后,于2023年5月24日对雷池进行正式切换,此时版本为1.5.1。 里程碑纪念 后续一直跟随雷池进行版本升级,当前…

QT_GUI

1、QT安装 一个跨平台的应用程序和用户界面框架,用于开发图形用户界面(GUI)应用程序以及命令行工具。QT有商业版额免费开源版,一般使用免费开源版即可,下面安装的是QT5,因为出来较早,使用较多&…

Python特征工程 — 1.4 特征归一化方法详解

目录 1 Min-Max归一化 方法1:自定义的Min-Max归一化封装函数 方法2: scikit-learn库中的MinMaxScaler 2 Z-score归一化 方法1:自定义的Z-score归一化封装函数 方法2: scikit-learn库中的StandardScaler 3 最大值归一化 4 L…

考研生活day1--王道课后习题2.2.1、2.2.2、2.2.3

2.2.1 题目描述: 解题思路: 这是最基础的操作,思路大家应该都有,缺少的应该是如何下笔,很多同学都是有思路但是不知道如何下笔,这时候看思路的意义不大,可以直接看答案怎么写,最好…

Java项目:基于SSM框架实现的游戏攻略网站系统分前后台【ssm+B/S架构+源码+数据库+毕业论文+任务书】

一、项目简介 本项目是一套基于SSM框架实现的游戏攻略网站系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能…

redhat7.x 升级openssh至openssh-9.8p1

1.环境准备: OS系统:redhat 7.4 2.备份配置文件: cp -rf /etc/ssh /etc/ssh.bak cp -rf /usr/bin/openssl /usr/bin/openssl.bak cp -rf /etc/pam.d /etc/pam.d.bak cp -rf /usr/lib/systemd/system /usr/lib/systemd/system.bak 3.安装…

UB9A0全系统全频高精度板卡性能指标

UB9A0 板卡是基于和芯星通自主研发的新一代射频基带及高精度算法一体化 GNSS SoC 芯片—Nebulas Ⅳ开发的全系统全频点高精 OEM 板卡 ,支持 BDS,GPS, GLONASS,Galileo,QZSS,NavIC,SBAS&#xff…

linux c 应用编程定时器函数

在 Linux C 应用编程中,对于多线程编程中的定时器函数使用,通常可以借助 pthread 库和系统提供的定时器相关的函数来实现。 首先,常见的定时器函数有 setitimer() 和 alarm() 。setitimer() 函数可以更精确地设置定时器,它可以设…

JAVA学习-练习试用Java实现“螺旋矩阵 II”

问题: 给定一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]] 示例 2: 输入&…