[数据结构】——七种常见排序

文章目录

    • 前言
  • 一.冒泡排序
  • 二.选择排序
  • 三.插入排序
  • 四.希尔排序
  • 五.堆排序
  • 六.快速排序
    • hoare
    • 挖坑法
    • 前后指针
    • 快排递归实现:
    • 快排非递归实现:
  • 七、归并排序
    • 归并递归实现:
    • 归并非递归实现:
  • 八、各个排序的对比图

前言

  • 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小, 递增或递减的排列起来的操作。
  • 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

接下来会涉及到的排序
在这里插入图片描述

这里写了一个测试排序性能的代码,方便我们观察各个排序的好坏

//测试排序的性能
void TestOP()
{srand((unsigned)time(NULL));//N的数值手动改变,以判断性能的好坏const int N = 100000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand() + i;a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin7 = clock();BubbleSort(a7, N);int end7 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("QuickSort:%d\n", end5 - begin5);printf("MergeSort:%d\n", end6 - begin6);printf("BubbleSort:%d\n", end7 - begin7);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);
}

还有交换函数

//交换函数
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}


以下排序默认是升序,即从小到大的顺序

一.冒泡排序

冒泡的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性

在这里插入图片描述

从图中我们可以看出,冒泡排序其实就是一种选择排序,即走一次,找到最大的数放在最右边,接下来要排序的数据就少了一个,再走一次,找到此时最大的数放在此时的最右边,接下来不断重复此步骤,数据就有序了

//冒泡排序
void BubbleSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int flag = 0;for (int j = 0; j < n - 1 - i; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);flag = 1;}}if (flag == 0){return;}}
}

虽然我们使用了flag进行了优化,使冒泡排序在最好的情况下的时间复杂度位O(N),但是实际上冒泡排序只有教学意义,没有实践意义,效率非常低
在十万个数据下面,冒泡走了5s,而在一百万数据下面,走了接近1min了,可见效率是如此的低下

在这里插入图片描述
在这里插入图片描述

二.选择排序

选择排序的时间复杂度是O(N^2),空间复杂度是O(1),具有不稳定性

在这里插入图片描述

从图中我们可以清楚的看到,选择排序每走一次,找到最大或者最小的数据放在最右边或者最左边,然后减少排序的个数,以此类推完成排序

这个排序方法可以优化一下,即走一次找到最小的同时找到最大的

//选择排序
void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin < end){int mini = begin;int maxi = begin;for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);if (maxi == begin){maxi = mini;}Swap(&a[end], &a[maxi]);begin++;end--;}
}

选择排序即没有实际意义,也没有教学意义,效率低下
在十万个数据下面,选择走了8s,而在一百万数据下面,走了接近15min了,效率不行

在这里插入图片描述
在这里插入图片描述

三.插入排序

插入排序的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性
在这里插入图片描述

插入排序的思路就是假设在[0,end]是有序的数据,在end+1的位置上插入一个新的数据,用tmp保存插入的数据。
如果end位置上的值大于tmp,end就减1,比较此时end位置上的值与tmp的大小
如果end位置上的值小于tmp,退出循环,将tmp赋给end + 1 位置上的值

//插入排序
void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;//[0,end]是有序的,插入[end+1]数据int tmp = a[end + 1];while (end >= 0){if (a[end] > tmp){a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;}
}

虽然插入排序的时间复杂度是O(N^2),但是它具有实践意义

在十万个数据下面,走了1s,在一百万数据下面,走了16s了,可见效率是还可以

在这里插入图片描述

在这里插入图片描述

四.希尔排序

希尔排序的时间复杂度是O(N^1.3),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

希尔排序的思想:

  1. 预排序:先分gap,在各自的组内进行插入排序
  2. 插入排序:排好序后,减小gap的值,再次进行预排序,直到gap = 1,进行插入排序,这样数据就有序了

假设gap = 3,将原数据分成3组,那么第一趟预排序的结果为下图
在这里插入图片描述
可以看到在走了一趟后的数据,比原始数据接近有序,这就是希尔排序的优点

//希尔排序
void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){gap = gap / 3 + 1;//多组一起走for (int i = 0; i < n-gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (a[end] > tmp){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

在十万个数据下面,希尔走了31ms,在一百万数据下面,走了264ms,可见效率还是很快的

在这里插入图片描述
在这里插入图片描述

五.堆排序

堆排序的时间复杂度是O(NlogN),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。
  2. 将其与末尾元素进行交换,此时末尾就为最大值。
  3. 然后将剩余n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。 如此反复执行,便能得到一个有序序列了。
//向下调整法
void AdjustDown(int* a, int n, int parent)
{int child = 2 * parent + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = 2 * parent + 1;}else{break;}}
}//堆排序
void HeapSort(int* a, int n)
{//创建堆for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}//排序int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

在十万个数据下面,堆排走了45ms,在一百万数据下面,走了473ms,效率还可以
在这里插入图片描述
在这里插入图片描述

六.快速排序

快速排序的平均时间复杂度是O(NlogN),但是在最坏情况下有可能是O(N^2),空间复杂度是O(logN)~O(N),不具有稳定性
在这里插入图片描述

快速排序(Quick Sort)是一种常用的排序算法。快速排序的基本思想是通过选择一个基准元素,将数组分为两部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。然后,对左右两部分分别进行快速排序,直到整个数组有序。

但是当数组已经有序时是最坏情况,快速排序的时间复杂度可能会达到O(N^2)。但是,在大多数情况下,快速排序的时间复杂度都非常接近O (NlogN)

快速排序优化的方法:

1.三数取中

可以看到假定最左边的数作为基准元素,会不准确,因为有可能是最大的数也有可能是最小的数,影响效率,我们可以选择三个数中间的数来作为基准元素

//三数取中法  left  midi  right
int GetMidi(int* a,int left,int right)
{int midi = (left + right) / 2;if (a[left] > a[midi]){if (a[midi] >= a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}else{if (a[midi] <= a[right]){return midi;}else if (a[left] > a[right]){return left;}else{return right;}}
}

2.小区间优化

由于快速排序要递归数据区间,只要递归就要消耗空间,那么当数据区间比较小时,可以用插入排序,不用在递归了

//小区间排序 -> 插入排序
if ((right - left + 1) < 10)
{//注意数组取的位置和数组的长度InsertSort(a+left, right - left + 1);
}

快速排序有三种排序方法:

hoare

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此时,数据6已经排好了,只需要递归它的左边与右边进行排序即可

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int begin = left;int end = right;while (begin < end){while (begin < end && a[end] >= a[keyi]){end--;}while (begin < end && a[begin] <= a[keyi]){begin++;}Swap(&a[begin], &a[end]);}Swap(&a[keyi], &a[begin]);return begin;
}

挖坑法

在这里插入图片描述
在这里插入图片描述

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = a[left];int begin = left;int end = right;while (begin < end){while (begin < end && a[end] >= key){end--;}a[begin] = a[end];while (begin < end && a[begin] <= key){begin++;}a[end] = a[begin];}a[begin] = key;return begin;
}

前后指针

在这里插入图片描述
在这里插入图片描述

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[cur], &a[prev]);}cur++;}Swap(&a[prev], &a[keyi]);return prev;
}

快排递归实现:

以上三种方法针对的是每一次排序,我们还需要递归剩下的区间来完成数据的有效

void QuickSort(int* a, int left, int right)
{//[left,right]是闭区间if (left >= right){return;}//小区间排序 -> 插入排序if ((right - left + 1) < 10){//注意数组取的位置和数组的长度InsertSort(a+left, right - left + 1);}else{//随便选择一种排序方法即可int keyi = PartSort3(a,left,right);//[left,keyi-1] keyi [keyi+1,right]//递归左边与右边QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}
}

在十万个数据下面,快速排序递归方法走了7ms,在一百万数据下面,走了80ms,可见效率非常快

在这里插入图片描述

在这里插入图片描述

快排非递归实现:

众所周知,递归会在栈上开辟空间,当递归的深度很大时,会导致栈溢出,这时我们可以把快速排序改成用非递归的形式实现

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

现在我们利用栈来实现,这里的栈是数据结构里面的栈。因为内存的栈的空间很小,而堆的空间很大,数据结构的栈就是在堆上开辟的

在这里插入图片描述

// 快速排序 非递归实现 
//利用栈来实现
void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STPush(&st, right);STPush(&st, left);while (!STEmpty(&st)){int begin = STTop(&st);STPop(&st);int end = STTop(&st);STPop(&st);int keyi = PartSort3(a, begin, end);//[begin,keyi-1] keyi [keyi+1,end]if (keyi + 1 < end){STPush(&st, end);STPush(&st, keyi + 1);}if (begin < keyi - 1){STPush(&st, keyi - 1);STPush(&st, begin);}}STDestroy(&st);
}

在十万个数据下面,快速排序非递归方法走了19ms,在一百万数据下面,走了283ms,可见效率与递归方法的差不多

在这里插入图片描述
在这里插入图片描述

七、归并排序

归并排序的时间复杂度是O(NlongN),空间复杂度是O(N),具有稳定性

在这里插入图片描述

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide
andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序核心步骤:
将数据划分区间,区间大小从小到大,每个区间进行归并,归并完成后就要拷贝回去

在这里插入图片描述

归并递归实现:

void _MergeSort(int* a, int* tmp, int left,int right)
{//递归if (left >= right){return;}int mid = (left + right) / 2;//[left,mid][mid+1,right]_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid+1, right);//归并int begin1 = left;int end1 = mid;int begin2 = mid + 1;int end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//拷贝memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(n * sizeof(int));if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

在十万个数据下面,归并排序递归方法走了9ms,在一百万数据下面,走了93ms,可见效率非常快
在这里插入图片描述
在这里插入图片描述

归并非递归实现:

上面我们提到递归会有栈溢出的问题,所有我们可以尝试一下归并的非递归的实现方法

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

这次我们使用循环来实现,归并的核心就是分区间进行排序,既然如此, 我们可以设置分组gap的初始值为1,然后归并一次,归并完成后gap乘以2,来进行下一次的归并区间,不断重复此步骤直到gap 大于等于 数组长度时退出循环

//归并排序 非递归实现
void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}//分组排序 每次两个gap组进行归并排序int gap = 1;while (gap < n){for (int i = 0; i < n; i+=2*gap){int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;int j = i;//printf("[%d,%d],[%d,%d]", begin1, end1, begin2, end2);//如果begin2越界了,就不归并if (begin2 >= n){break;}//如果end2越界了,就修正if (end2 >= n){end2 = n - 1;}//归并排序while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//拷贝memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap *= 2;}free(tmp);tmp = NULL;
}

在十万个数据下面,归并排序非递归方法走了9ms,在一百万数据下面,走了87ms,可见效率非常快

在这里插入图片描述
在这里插入图片描述

八、各个排序的对比图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/37052.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app 微信小程序开发到发布流程

1. uni-app 微信小程序开发到发布流程 1.1. 新建一个uni-app 项目 1.2. 发行微信小程序 1.3. 微信开发者平台的微信小程序appid 复制进来&#xff08;点击发行&#xff09; 1.4. IDE may already started at port xxxx, trying to connect &#xff08;1&#xff09;关闭微信…

小白上手AIGC-基于FC部署stable-diffusion

AIGC AIGC&#xff08;人工智能创造内容&#xff09;作为一种基于人工智能技术生成内容的新型创作模式。打破了过去大家对于AI的理解都是说只能涉足部分领域而无法涉足艺术或者是其他的创作领域的定律&#xff0c;现在的AIGC也能够创作内容了&#xff0c;而不再只是单纯的返回…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-45多尺度目标检测

45多尺度目标检测 # 多尺度锚框 """ 减少图像上的锚框数量并不困难。 比如&#xff0c;我们可以在输入图像中均匀采样一小部分像素&#xff0c; 并以它们为中心生成锚框。 此外&#xff0c;在不同尺度下&#xff0c;我们可以生成不同数量和不同大小的锚框。 直…

Apifox 更新|定时任务、内网自部署服务器运行接口定时导入、数据库 SSH 隧道连接

Apifox 新版本上线啦&#xff01; 看看本次版本更新主要涵盖的重点内容&#xff0c;有没有你所关注的功能特性&#xff1a; 自动化测试支持设置「定时任务」支持内网自部署服务器运行「定时导入」数据库均支持通过 SSH 隧道连接自动化测试数据库操作优化 1、自动化测试支持设…

Mac(M1芯片)安装多个jdk,Mac卸载jdk

1.jdk下载 oracle官方链接&#xff1a;oracle官方下载链接 2.安装 直接下一步&#xff0c;下一步就行 3.查看是否安装成功 出现下图内容表示安装成功。 4.配置环境变量 open -e .bash_profile 路径建议复制过去 #刷新环境变量 source ~/.bash_profile 5.切换方法 6.jdk…

企业应该如果安全上网,软件防查盗版,企业防盗版

随着信息化的发展&#xff0c;企业日常办公越来越依赖互联网。终端以及普通PC终端在访问互联网过程中&#xff0c;会遇到各种各样不容忽视的风险&#xff0c;例如员工主动故意的数据泄漏&#xff0c;后台应用程序偷偷向外部发信息&#xff0c;木马间谍软件的外联&#xff0c;以…

Spring Boot 过滤器和拦截器详解

目录 Spring Boot 过滤器1.什么是过滤器2.工作机制3.实现过滤器 Spring Boot 拦截器1. 什么是拦截器2. 工作原理3.实现4.拓展&#xff08;MethodInterceptor 拦截器&#xff09;实现 过滤器和拦截器区别过滤器和拦截器应用场景过滤器拦截器 Spring Boot 过滤器 1.什么是过滤器 …

信创认证 | Smartbi Insight V11成功适配申威3231处理器

在信息技术飞速发展的浪潮中&#xff0c;软硬件的深度融合与协同发展已成为推动行业创新的关键因素。 近日&#xff0c;思迈特商业智能与数据分析软件[简称&#xff1a;Smartbi Insight]V11在统信服务器操作系统V20和中电科申泰信息科技有限公司产品申威3231处理器环境下完成适…

日本职场跳槽涨薪调查报告!原来薪资涨幅的秘诀在这!

看到篇帖子&#xff0c;日本职场跳槽的调查报告&#xff1a; 文章中根据日本大型求职网站doda&#xff0c;通过分析网站注册会员的数据以及职业顾问的解说&#xff0c;来了解一下跳槽实现工资提升的人基本情况以及趋势。 本次调查对象跳槽后平均年收入提升了906,274日元&#…

Python 语法基础一

1.变量 python 中变量很简单&#xff0c;不需要指定数据类型&#xff0c;直接使用等号定义就好。python变量里面存的是内存地址&#xff0c;也就是这个值存在内存里面的哪个地方&#xff0c;如果再把这个变量赋值给另一个变量&#xff0c;新的变量通过之前那个变量知道那个变量…

《昇思25天学习打卡营第10天 | 昇思MindSporeFCN图像语义分割》

第10天 本节学习了FCN图像语义分割。全卷积网络是用于图像语义分割的一种框架。FCN是首个端到端&#xff08;end to end&#xff09;进行像素级&#xff08;pixel level&#xff09;预测的全卷积网络。FCN有两大明显的优点&#xff1a;一是可以接受任意大小的输入图像&#xff…

【渗透工具】内网多级代理工具Venom详细使用教程

免责申明 本公众号的技术文章仅供参考&#xff0c;此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等&#xff08;包括但不限于&#xff09;进行检测或维护参考&#xff0c;未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息…

【LeetCode】九、双指针算法:环形链表检测 + 救生艇

文章目录 1、双指针算法1.1 对撞双指针1.2 快慢双指针 2、leetcode141&#xff1a;环形链表3、leetcode881&#xff1a;救生艇 1、双指针算法 用两个指针来共同解决一个问题&#xff1a; 1.1 对撞双指针 比如先有一个有序的数组array int[] array {1, 4, 5, 7, 9}先要找两个…

什么是产线工控安全,如何保障产线设备的安全

什么是产线工控安全&#xff1f; 工控&#xff0c;指的是工业自动化控制&#xff0c;主要利用电子电气、机械、软件组合实现。即是工业控制系统&#xff0c;或者是工厂自动化控制。产线工控安全指的是工业控制系统的数据、网络和系统安全。随着工业信息化的迅猛发展&#xff0…

如何利用“AI交互数字人+展厅”拓展文娱消费空间?

打造新生代潮玩聚集地&#xff0c;打造演艺新空间&#xff0c;促进虚拟现实体验等文娱业态场景创新&#xff0c;成为了当下发展文旅消费新场景的一大重要手段。数字人汇集了虚拟现实、增强现实、全息投影、人工智能、实时传输语音合成等数字技术&#xff0c;可以利用数字人重构…

SpringBoot项目中获取IP地址

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 OkHttp 是一个由 Square 开发的高效、现代的 HTTP 客户端库&#xff0c;用于 Android 和 Java 应用程序。它支持 HTTP/2 和 SPDY 等现代网络协议&#xff0c;…

Jmeter 进行http接口测试

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 本文主要针对http接口进行测试&#xff0c;使用 jmeter工具实现。 Jmeter工具设计之初是用于做性…

如何用Vue3和Plotly.js绘制动态3D图表?

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 Plotly.js: 使用Vue.js动态加载数据并绘制图表 应用场景 在数据可视化应用中&#xff0c;需要将数据动态加载到图表中并进行实时更新。本文将展示如何使用Plotly.js和Vue.js实现这一功能&#xff0c;从加载外…

MobPush iOS端海外推送最佳实现

推送注册 在AppDelegate里进行SDK初始化&#xff08;也可以在Info.plist文件中进行AppKey&#xff0c;AppSecret的配置&#xff09;并对通知功能进行注册以及设置推送的环境和切换海外服务器等&#xff0c;参考如下步骤代码&#xff1a; <span style"background-colo…

【深度学习】图形模型基础(1):使用潜在变量模型进行数据分析的box循环

1.绪论 探索数据背后的隐藏规律&#xff0c;这不仅是数据分析的艺术&#xff0c;更是概率模型展现其威力的舞台。在这一过程中&#xff0c;潜在变量模型尤为关键&#xff0c;它成为了数据驱动问题解决的核心引擎。潜在变量模型的基本理念在于&#xff0c;那些看似复杂、杂乱无…