ResNet-50算法

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、理论知识储备

1.CNN算法发展

  1. AlexNet是2012年ImageNet竞赛中,由Alex Krizhevsky和Ilya Sutskever提出,在2012年ImageNet竞赛中,AlexNet以top5错误率为15.3%取得了分类任务的第一名。
  2. VGGNet是2014年ImageNet竞赛中,由Karen Simonyan和Andrew Zisserman提出,在2014年ImageNet竞赛中,VGGNet以top5错误率为7.3%取得了分类任务的第二名。
  3. GoogLeNet是2014年ImageNet竞赛中,由Christian Szegedy提出,在2014年ImageNet竞赛中,GoogLeNet以top5错误率为6.6%取得了分类任务的第一名。
  4. ResNet是2015年ImageNet竞赛中,由Kaiming He、Xiangyu Zhang、Saining Xie、Trevor Darrell提出,在2015年ImageNet竞赛中,ResNet以top5错误率为3.57%取得了分类任务的第一名。
  5. DenseNet是2016年ImageNet竞赛中,由Gao Huang、Zhuang Liu、Kaiming He、Xiangyu Zhang提出,在2016年ImageNet竞赛中,DenseNet以top5错误率为3.03%取得了分类任务的第一名。
  6. SE-ResNet是2017年ImageNet竞赛中,由Xiaolong Wang、Kaiming He、Jian Sun提出,在2017年ImageNet竞赛中,SE-ResNet以top5错误率为2.97%取得了分类任务的第一名。
  7. ResNeXt是2017年ImageNet竞赛中,由Saining Xie、Zhifeng Cai、Trevor Darrell提出,在2017年ImageNet竞赛中,ResNeXt以top5错误率为2.80%取得了分类任务的第一名。

2.残差网络的由来

深度残差网络RestNet(deep residual network)是2015年ImageNet竞赛中由何凯明等提出,因为它简单与实用并存,随后很多研究都是建立在ResNet-50或者ResNet-101的基础上完成。
ResNet主要解决深度卷积网络在深度加深时候的“退化”问题。在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题Szegedy提出BN层后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。但是作者发现加了BN后再加大深度仍然不容易收敛,其提到了第二个问题–准确率下降问题:层级大到一定程度时准确率就会饱和,然后迅速下降,这种下降即不是梯度消失引起的也不是过拟合造成的,而是由于网络过于复杂,以至于光靠不加约束的放养式的训练很难达到理想的错误率。
准确率下降问题不是网络结构本身的问题,而是现有的训练方式不够理想造成的。当前广泛使用的优化器,无论是SGD,还是RMSProp,或是Adam,都无法在网络深度变大后达到理论上最优的收敛结果。
作者在文中证明了只要有合适的网络结构,更深的网络肯定会比较浅的网络效果要好。证明过程也很简单:假设在一种网络A的后面添加几层形成新的网络B,如果增加的层级只是对A的输出做了个恒等映射(identity mapping),即A的输出经过新增的层级变成B的输出后没有发生变化,这样网络A和网络B的错误率就是相等的,也就证明了加深后的网络不会比加深前的网络效果差。

在这里插入图片描述

何恺明提出了一种残差结构来实现上述恒等映射(图1):整个模块除了正常的卷积层输出外,还有个分支把输入直接连到输出上,该分支输出和卷积的输出做算术相加得到最终的输出,用公式表达就是 H ( x ) = F ( x ) + x H(x)= F(x)+ x H(x)=F(x)+x $ x $是输入, $ F(x) 是卷积分支的输出, 是卷积分支的输出, 是卷积分支的输出, H(x) $是整个结构的输出。可以证明如果 $ F(x) $分支中所有参数都是0 $ H(x) $就是个恒等映射。残差结构人为制造了恒等映射,就能让整个结构朝着恒等映射的方向去收敛,确保最终的错误率不会因为深度的变大而越来越差。如果一个网络通过简单的手工设置参数值就能达到想要的结果,那这种结构就很容易通过训练来收敛到该结果,这是一条设计复杂的网络时通用的规则。

在这里插入图片描述

图2左边的单元为 ResNet 两层的残差单元,两层的残差单元包含两个相同输出的通道数的 3x3 卷积,只是用于较浅的 ResNet 网络,对较深的网络主要使用三层的残差单元。三层的残差单元又称为bottleneck 结构,先用一个1x1卷积进行降维,然后 3x3 卷积,最后用 1x1 升维恢复原有的维度。另外,如果有输入输出维度不同的情况,可以对输入做一个线性映射变换维度,再连接后面的层。层的残差单元对于相同数量的层又减少了参数量,因此可以拓展更深的模型。通过残差单元的组合有经典的 ResNet-50ResNet-101等网络结构。

二、前期工作

1.设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')if gpus:tf.config.explicitly_set_memory_growth(gpus[0], True)tf.config.set_visible_devices(gpus[0], 'GPU')print("GPUs available")

2.导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,pathlib
import numpy as npfrom tensorflow import keras
from tensorflow.keras import layers,models
data_dir = pathlib.Path('F:/host/Data/bird_photos')

3.查看数据

image_count = len(list(data_dir.glob('*/*')))print("图片总数为:",image_count)

在这里插入图片描述

三、数据预处理

文件夹数量
Bananaquit166张
Black Skimmer111张
Black Throated Bushtiti122张
Cockatoo166张

1.加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset对象中。

batch_size = 8
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size,
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size,
)
# 我们可以通过`class_names`属性查看类别名称
class_names = train_ds.class_names
print(class_names)

在这里插入图片描述

2.可视化数据

plt.figure(figsize=(10, 5)) # 图形的宽为10高为5
plt.suptitle('Bird Photos')for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i+1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))

在这里插入图片描述

3.再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

在这里插入图片描述

  • image_batch: 包含8张图像的张量,形状为(8, 224, 224, 3)。
  • labels_batch: 包含8个标签的张量,形状为(8,)。

4.配置数据集

  • shuffle: 随机打乱数据集。
  • prefetch: 预取数据集,以加速数据集的迭代。
  • cache: 缓存数据集,以加速数据集的迭代。
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

四、残差网络(ResNet)介绍

1.残差网络解决了什么

残差网络是为了解决深度神经网络(DNN)训练过程中梯度消失和梯度爆炸的问题而提出的。它通过引入残差连接,将输入直接加到输出上,从而允许网络学习更复杂的函数。

2.ResNet-50介绍

ResNet-50有两个基本的块,分别名为Conv BlockIdentity Block

五、构建ResNet-50网络模型

from keras import layersfrom keras.layers import Input, Activation, BatchNormalization, Flatten
from keras.layers import Conv2D, AveragePooling2D, Dense, MaxPooling2D, ZeroPadding2D
from keras.models import Modeldef identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu',name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu',name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)x = layers.add([x, input_tensor], name=name_base + 'add')x = Activation('relu',name=name_base + 'relu4')(x)return x# 在残差网络中,广泛地使用了BN层;但是没有使用MaxPoo1ing以便减小特征图尺寸,
# 作为替代,在每个模块的第一层,都使用了strides=(2,2)的方式进行特征图尺寸缩减,
# 与使用MaxPooling相比,毫无疑问是减少了卷积的次数,输入图像分辨率较大时比较适合
# 在残差网络的最后一级,先利用layer.add()实现H(x)=x+F(x)
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base =  str(stage) + block + '_conv_block_'x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu',name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu',name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)x = layers.add([x, shortcut],name=name_base + 'add')x = Activation('relu',name=name_base + 'relu4')(x)return xdef ResNet50(input_shape=(224, 224, 3), num_classes=1000):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x =     conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x =     conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x =     conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x =     conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x =  Flatten()(x)x = Dense(num_classes, activation='softmax', name='fc1000')(x)model = Model(img_input, x, name='ResNet50')# 加载预训练模型model.load_weights('./weights/resnet50_weights_tf_dim_ordering_tf_kernels.h5')return modelmodel = ResNet50()
model.summary()

在这里插入图片描述

六、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间预测值和实际值之间的差距。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

七、训练模型

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs)

在这里插入图片描述

八、评估模型

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

九、预测

# 采用加载的模型来看预测结果plt.figure(figsize=(10, 5))
plt.suptitle('Predictions')for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)# 显示图片plt.imshow(images[i].numpy().astype("uint8"))# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0)# 使用模型预测图片predictions = model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

在这里插入图片描述

十、个人小结

在这篇文章中,我深入探讨了卷积神经网络(CNN)的发展历程,特别是残差网络(ResNet)的诞生和原理。CNN在图像识别领域取得了显著的进展,但随着网络深度的增加,梯度消失和爆炸的问题逐渐显现,影响了深层网络的性能。ResNet通过引入残差学习框架,有效地解决了这一问题,使得网络能够学习到恒等映射,从而在保持性能的同时增加深度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/36318.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

头歌——机器学习——支持向量机案例

第1关:基于支持向量机模型的应用案例 任务描述 本关任务:编写一个基于支持向量机模型的应用案例。 相关知识 在本应用案例中,我们借助一个具体的实际问题,来完整地实现基于支持向量机模型的开发应用。在此训练中,我…

运筹系列93:VRP精确算法

1. MTZ模型 MTZ是Miller-Tucker-Zemlin inequalities的缩写。除了定义是否用到边 x i j x_{ij} xij​外,还需要定义一个 u i u_i ui​用来表示此时车辆的当前载货量。注意这里x变量需要定义为有向。 这里定义为pickup问题,代码为: using Ju…

windows下载jdk并安装步骤(保姆级教程)

一、下载jdk 下载地址: https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 二、双击下载好的jdk 更改安装目录然后点击下一步 然后会弹出jre的安装,需要选择路径(注意:这里的路径必须跟前面的jdk在…

将huggingface的大模型转换为safetensor格式

很多huggingface的大语言模型都是pytorch的格式,但是mindie需要safetensor格式,另外mindieservice加载原始的baichuan2-13b的模型出错,后来排查是bfloat16数据格式的问题,所以这次转换要一次性转为float16的格式。 上代码&#x…

计算机网络:如何隐藏真实的IP和MAC地址?

目录 一、什么是MAC地址二、什么是IP地址三、如何隐藏真实的MAC地址四、如何隐藏真实的IP地址 一、什么是MAC地址 MAC地址,全称为媒体访问控制地址(Media Access Control Address),是一种用于网络通信的唯一标识符。它是由IEEE 8…

PLC网关如何选择?plc网关作用-天拓四方

一、PLC网关在工业自动化领域的重要性和作用 PLC网关在工业自动化领域的重要性和作用不言而喻。作为工业自动化系统的重要组成部分,PLC网关起到了关键的桥梁作用,实现了PLC与其他设备、系统之间的数据传输和通信。 首先,PLC网关的重要性体现…

最像人声的语音合成模型-ChatTTS

目录 写在前面 一、使用ChatTTS 二、优点 三、局限 写在前面 最像人声的AI来了!语音开源天花板ChatTTS火速出圈,3天就斩获9k个star。截至发稿前,已经25.9k个star了。这是专门为对话场景设计的语音生成模型,用于LLM助手对话任务…

搭建抖音微短剧系统:源码部署与巨量广告回传全解析

在数字化浪潮中,抖音微短剧已成为内容创作的新宠。想要搭建一个高效的抖音微短剧系统,并实现与巨量广告的有效回传吗?本文将为您详细解析源码部署与广告回传的关键步骤。 一、源码部署:构建短剧系统的基石 源码是软件开发的起点…

vscode远程连接Ubantu

一、首先用VM虚拟机打开一个Linux系统 二、打开VScode 在扩展里安装 安装后,打开Linux查看IP地址 在VScode 中新建连接主机 输入linux_nameip地址 -A 然后输入Linux的登录密码 就可以远程操控 Linux了 可以在终端中远程控制Linux 点击左上角的打开文件夹可以很…

什么是 Azure OpenAI?

目录 一、说明 二、什么是 Azure OpenAI 2.1 网络结构 2.2 、为什么使用 Azure OpenAI 2.3 如何使用 Azure OpenAI 三、从哪里开始 Azure OpenAI 之旅 3.1 关于 Azure OpenAI,我还需要了解什么 3.2 RBAC 权限和角色 3.3 演示 1:在公共数据上应用…

聚合项目学习

首先建立一个总的工程目录,里边后期会有我们的父工程、基础工程(继承父工程)、业务工程(依赖基础工程)等模块 1、在总工程目录中(open一个空的文件夹),首先建立一个父工程模块(通过spring init…

4面体空间内直链4点结构分布与占比

在30个点的4面体空间内取4个点,有30*29*28*27/2427405种取法,要求得到的4个点必须在直链上。只有144个结构符合要求,在平移操作下不重合的结构有36个。 这36个结构可以按照旋转对称性进一步分成3组0,1,4,每…

Anisble Playbook

文章目录 一、Playbook简介三种常见的数据格式Playbook特点YAML语言介绍 二、Playbook核心组件host组件remote_user组件task列表和action组件gather_factsHandlers notifyignore_errors 三、playbook命令playbook命令tags 标签 四、Playbook中的变量setup模块中的变量Playbook命…

vue3 【提效】自动路由(含自定义路由) unplugin-vue-router 实用教程

不再需要为每一个路由编写冗长的 routes 配置啦,新建文件便可自动生成路由! 使用方法 1. 安装 unplugin-vue-router npm i -D unplugin-vue-router2. 修改 vite 配置 vite.config.ts import VueRouter from unplugin-vue-router/viteplugins 中加入 V…

【Redis一】Redis配置与优化

目录 一.关系型数据库与非关系型数据库 1.关系型数据库 2.非关系型数据库 3.二者区别 4.非关系型数据库产生背景 5.NoSQL与SQL数据记录对比 关系型数据库 非关系型数据库 二.Redis相关概述 1.简介 2.五大数据类型 3.优缺点 3.1.优点 3.2.缺点 4.使用场景 5.采用…

苹果应用Testflight上架完整步聚

1.全部选中下图内容,包含iPhone与iPad屏幕所有旋转方向 2. 准备App图标,一定要有152和167这个尺寸,不然后提交不过 3.1024这个尺寸的的图像不能有透明层,不然提交不通过 4.选中编译设备为Any iOS Device[arm64] 5.选择Product下的Archive进行生成 6.在弹出的窗口中选择Test…

Python之三大基本库——Numpy(2)

接着上次的内容接着讲,连续号都续上哈 七、numpu中random的随机生成函数 以下总结的是比较常用到的函数: 下面分别介绍一下不用的用法: 首先导入创建函数 import numpy as np np.random.seed(666)1、 rand(d0,d1,d2,...,dn):返…

JavaWeb系列三: JavaScript学习 下

文章目录 js数组定义方式数组遍历 js函数函数入门函数使用方式使用方式一使用方式二 函数注意事项函数练习题 定义对象使用object定义使用{}定义 事件onload事件onclick事件失去焦点事件内容发生改变事件表单提交事件静态注册动态注册表单作业 dom对象文档对象模型document对象…

边缘计算VNC智能盒子如何助力HMI设备实现二次开发?

HMI(Human-Machine Interface)又称人机界面,是用户与机器之间交互和通信的媒介。今天带你了解智能盒子如何助力HMI设备实现二次开发? HMI设备被广泛应用在工业自动化中,具有显示设备信息,实时监测&#xf…

python爬虫--scrapy框架

Scrapy 一 介绍 Scrapy简介 1.Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛2.框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非…