ocr数据不够,怎么造数据

1.确定特定字体类型;

2.收集合适的图片作为背景

3.在背景图上填写特定字体的字符内容

1)字体无法确认时怎么办?

方法一:可以将文本行裁剪出来去网站上确认,网站链接:字体识别-在线扫一扫图片找字体-搜字体!

方法二:将文字输入到文档文件中,更换不同的字体,看是否与字体目标匹配;

字体可以去网上下载,也可以在本机查找;本机的字体所在位置:

个人用户字体文件:~/.local/share/fonts
系统字体文件:/usr/share/fonts
字体配置文件:/etc/fonts/

下面是我处理的代码,仅供参考:

def check_dir1(path):if not os.path.exists(path):os.mkdir(path)else:files = os.listdir(path)for file in files:file_path = os.path.join(path, file)os.remove(file_path)
'''
制作一些文本行数据
'''
from PIL import ImageFont, ImageDraw
import PIL.Image as PImage
import random
import os
import numpy as np
import cv2
from rec.temporary_boundary.line_process import cut_line3_1
from result_process.preprocess import check_dir1if __name__=='__main__':cha_list = ['A','B','C','D','E','F','G','H','I','J','K',\'L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']save_dir = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/SAU_name'check_dir1(save_dir)txt_parh = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/SAU_name.txt'bg_img_dir = '/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/bg'bg_imgs = os.listdir(bg_img_dir)f_save = open(txt_parh, 'w', encoding='utf-8')check_dir1(save_dir)num = 50while num:all_num = 0bg_img = random.choice(bg_imgs)num1=random.choice([2, 3])chr_str = ''all_num += num1while num1:chr_ = random.choice(cha_list)chr_str += chr_num1 -=1char_med = ''for i in range(3):num2=random.choice([5,6,7,8])chr_str2=''all_num += num2while num2:chr_ = random.choice(cha_list)chr_str2 += chr_num2 -= 1if i == 0:char_med += chr_str2+', 'elif i == 1:char_med += chr_str2 + ' 'elif i == 2:char_med += chr_str2 + ' 'chr_1 = random.choice(cha_list)result_str = chr_str+' '+char_med+chr_1all_num += 1im = PImage.open(os.path.join(bg_img_dir, bg_img))w, h = im.sizefont_size = 24w_len = int(0 + all_num * (font_size-3) + 4)if w_len > w:num -= 1continuename_font = ImageFont.truetype('/home/fuxueping/4tdisk/data/certificate_reader/北京现场测试数据/20240614针对识别问题/fonts/n019003l.pfb', font_size)draw = ImageDraw.Draw(im)y_len = random.randint(0, h-font_size-5)color = tuple([random.randint(0, 20) for _ in range(3)])draw.text((2, y_len), result_str, fill=color, font=name_font)box = (0, y_len, w_len, y_len+font_size+5)rect_img = im.crop(box)image_array = np.array(rect_img)cv2_image = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)result, _ = cut_line3_1(cv2_image)if len(result):region_rec = cv2_image[result[1]:result[3], result[0]:min(w, result[2]+2)]  # 裁剪出待识别的区域image_array = cv2.cvtColor(region_rec, cv2.COLOR_BGR2RGB)rect_img = PImage.fromarray(image_array)# image_array = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)# rect_img = PImage.fromarray(image_array)save_path = os.path.join(save_dir, str(num)+'_'+result_str+'.jpg')line = save_path+'\t'+result_str+'\n'f_save.write(line)rect_img.save(save_path)num -= 1f_save.close()
# 根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves_row(threshold, histogram):#行数是59# up_point = -1  # 上升点# is_peak = False# if histogram[0] >= threshold:up_point = 0 #起始位置is_peak = Truewave_peaks = []top_cut = []for i, x in enumerate(histogram): #x是对应的像素和,i是行if is_peak and x >= threshold:if i - up_point >=2 :# top_cut.append((up_point, i)) #加这一行,相当于裁减掉多于的空行up_point = i-1else:up_point = iis_peak = Falseelif not is_peak and x < threshold:#随后找到字符消失的位置is_peak = Trueif 1 < i < histogram.shape[0]-1:#行数不是在开头也不在结尾wave_peaks.append((up_point, i+1))else:wave_peaks.append((up_point, i))up_point = i# if is_peak and up_point != -1 and i - up_point > 4:#     wave_peaks.append((up_point, i))if not is_peak and x >= threshold:#虽然数据已经结束,但是没有出现小于阈值的情况wave_peaks.append((up_point, i))return wave_peaksdef cut_line3_1(rgb_img, kernel_size = 3, y_len = 5, row_threshold=255 * 1, col_thresh = 255*1):'''切割出每一行,只保留高度满足条件的一行内容,然后切除掉每一行的前端后尾端的空白'''rgb_img = method_9(rgb_img) #高斯滤波# 使用sauvola进行二值化h, w = rgb_img.shape[:2]sau_bin = sauvola_bin(rgb_img) #sauvola二值化# cv2.imwrite('./../temp/sauvola_bin.jpg', sau_bin)# sau_bin = get_charcter_region(rgb_img)  # 局部区域算阈值二值化# cv2.imwrite('./../temp/sau_bin1.jpg', sau_bin)sau_bin_inv = 255 - sau_bin# cv2.imwrite('./../temp/sau_bin_inv1.jpg', sau_bin_inv)if kernel_size != 0:sau_bin_inv = cv2.medianBlur(sau_bin_inv, kernel_size)# cv2.imwrite('./../temp/sau_bin_inv_dinose1.jpg', sau_bin_inv)col_histogram = np.sum(sau_bin_inv, axis=1)wave_peaks = find_waves_row(col_thresh, col_histogram)result = []#找出高度最大的区域,只保留一行内容max_y = 0result_y = []if not len(wave_peaks):return [], sau_bin_invfor i, wave_peak in enumerate(wave_peaks):y1 = wave_peak[0]y2 = wave_peak[1]if y2 - y1 < y_len: #20之前是这个阈值 ,将高度不满足>=5的字符区域去掉continueif max_y < y2 - y1:max_y = y2 - y1result_y = [y1, y2]if len(result_y): #有时候裁剪的图片可能是没有字符,这种情况多出现在证件类别错误的情况y1 = result_y[0]y2 = result_y[1]else:return [], sau_bin_invline_img = sau_bin_inv[y1:y2, :]# line_img_bgr = rgb_img[wave_peak[0]:wave_peak[1], :]# save_other = os.path.join(save_path, file + '_'+str(i)+'.jpg')# cv2.imwrite(save_other, line_img)row_histogram = np.sum(line_img, axis=0)  # 数组的每一列求和# row_max = np.max(row_histogram)# row_threshold = row_max - 255*1wave_peaks_line = find_waves_col(row_threshold, row_histogram)# cv2.imwrite('./../temp/line_img.jpg', line_img)x1 = 0x2 = wresult_ = []for wave_ in wave_peaks_line:len_x = wave_[1] - wave_[0]if len_x > 5:result_.append(wave_)if len(result_):  # 有时候朝水平投影内容消失了,就用【0,w】代替x1 = result_[0][0]x2 = result_[-1][1]return [x1, y1, x2, y2], sau_bin_inv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/36313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将huggingface的大模型转换为safetensor格式

很多huggingface的大语言模型都是pytorch的格式&#xff0c;但是mindie需要safetensor格式&#xff0c;另外mindieservice加载原始的baichuan2-13b的模型出错&#xff0c;后来排查是bfloat16数据格式的问题&#xff0c;所以这次转换要一次性转为float16的格式。 上代码&#x…

计算机网络:如何隐藏真实的IP和MAC地址?

目录 一、什么是MAC地址二、什么是IP地址三、如何隐藏真实的MAC地址四、如何隐藏真实的IP地址 一、什么是MAC地址 MAC地址&#xff0c;全称为媒体访问控制地址&#xff08;Media Access Control Address&#xff09;&#xff0c;是一种用于网络通信的唯一标识符。它是由IEEE 8…

PLC网关如何选择?plc网关作用-天拓四方

一、PLC网关在工业自动化领域的重要性和作用 PLC网关在工业自动化领域的重要性和作用不言而喻。作为工业自动化系统的重要组成部分&#xff0c;PLC网关起到了关键的桥梁作用&#xff0c;实现了PLC与其他设备、系统之间的数据传输和通信。 首先&#xff0c;PLC网关的重要性体现…

【华为OD机试】 约瑟夫问题(C++/Java/Python)

题目 题目描述 输入一个由随机数组成的数列(数列中每个数均是大于 0 的整数,长度已知),和初始计数值 m。 从数列首位置开始计数,计数到 m 后,将数列该位置数值替换计数值 m, 并将数列该位置数值出列,然后从下一位置从新开始计数,直到数列所有数值出列为止。 如果计数到…

最像人声的语音合成模型-ChatTTS

目录 写在前面 一、使用ChatTTS 二、优点 三、局限 写在前面 最像人声的AI来了&#xff01;语音开源天花板ChatTTS火速出圈&#xff0c;3天就斩获9k个star。截至发稿前&#xff0c;已经25.9k个star了。这是专门为对话场景设计的语音生成模型&#xff0c;用于LLM助手对话任务…

SUSE linux的启动过程介绍

引导Linux系统涉及不同的组件和任务。在固件和硬件初始化过程&#xff08;取决于机器的架构&#xff09;之后&#xff0c;内核通过引导加载程序GRUB2启动。此后&#xff0c;引导过程完全由操作系统控制并由systemd处理。systemd提供了一组“target”&#xff0c;用于为日常使用…

微信开放平台(第三方平台)

特征&#xff1a; 统一管理&#xff1a; 可以统一管理和操作多个公众号和小程序&#xff0c;提供批量化、集中化的服务。 代开发和运营&#xff1a; 为公众号和小程序提供代开发和运营服务&#xff0c;例如提供自动回复、模板消息、用户管理等功能。 接口调用&#xff1a; 通过…

基于深度学习的模糊图像还原

基于深度学习的模糊图像还原 模糊图像还原&#xff08;Image Deblurring&#xff09;是计算机视觉中的一个重要任务&#xff0c;旨在从模糊的图像中恢复出清晰的图像。模糊可以由于多种原因产生&#xff0c;例如相机抖动、运动模糊、焦点失准等。传统的图像去模糊方法通常依赖…

搭建抖音微短剧系统:源码部署与巨量广告回传全解析

在数字化浪潮中&#xff0c;抖音微短剧已成为内容创作的新宠。想要搭建一个高效的抖音微短剧系统&#xff0c;并实现与巨量广告的有效回传吗&#xff1f;本文将为您详细解析源码部署与广告回传的关键步骤。 一、源码部署&#xff1a;构建短剧系统的基石 源码是软件开发的起点…

vscode远程连接Ubantu

一、首先用VM虚拟机打开一个Linux系统 二、打开VScode 在扩展里安装 安装后&#xff0c;打开Linux查看IP地址 在VScode 中新建连接主机 输入linux_nameip地址 -A 然后输入Linux的登录密码 就可以远程操控 Linux了 可以在终端中远程控制Linux 点击左上角的打开文件夹可以很…

什么是 Azure OpenAI?

目录 一、说明 二、什么是 Azure OpenAI 2.1 网络结构 2.2 、为什么使用 Azure OpenAI 2.3 如何使用 Azure OpenAI 三、从哪里开始 Azure OpenAI 之旅 3.1 关于 Azure OpenAI&#xff0c;我还需要了解什么 3.2 RBAC 权限和角色 3.3 演示 1&#xff1a;在公共数据上应用…

【面试题】网络 http、https协议(第一篇)

1.简述HTTP协议 HTTP&#xff0c;全名超文本传输协议&#xff0c;是一个用于客户端与服务器之间进行数据传输的应用层协议&#xff0c;可以传输文本、图片、音视频等超文本内容。 1.HTTP使用TCP作为传输层协议&#xff0c;因此具有可靠性&#xff0c; 2.除此之外&#xff0c…

聚合项目学习

首先建立一个总的工程目录&#xff0c;里边后期会有我们的父工程、基础工程(继承父工程)、业务工程&#xff08;依赖基础工程&#xff09;等模块 1、在总工程目录中&#xff08;open一个空的文件夹&#xff09;&#xff0c;首先建立一个父工程模块&#xff08;通过spring init…

4面体空间内直链4点结构分布与占比

在30个点的4面体空间内取4个点&#xff0c;有30*29*28*27/2427405种取法&#xff0c;要求得到的4个点必须在直链上。只有144个结构符合要求&#xff0c;在平移操作下不重合的结构有36个。 这36个结构可以按照旋转对称性进一步分成3组0&#xff0c;1&#xff0c;4&#xff0c;每…

Anisble Playbook

文章目录 一、Playbook简介三种常见的数据格式Playbook特点YAML语言介绍 二、Playbook核心组件host组件remote_user组件task列表和action组件gather_factsHandlers notifyignore_errors 三、playbook命令playbook命令tags 标签 四、Playbook中的变量setup模块中的变量Playbook命…

vue3 【提效】自动路由(含自定义路由) unplugin-vue-router 实用教程

不再需要为每一个路由编写冗长的 routes 配置啦&#xff0c;新建文件便可自动生成路由&#xff01; 使用方法 1. 安装 unplugin-vue-router npm i -D unplugin-vue-router2. 修改 vite 配置 vite.config.ts import VueRouter from unplugin-vue-router/viteplugins 中加入 V…

消费疲软,预期一下债券的平均收益

在预测消费疲软对债券平均收益的影响时&#xff0c;我们需要考虑多个因素&#xff0c;包括宏观经济环境、货币政策、通胀预期以及债券市场的具体表现等。以下是对债券平均收益的预期分析&#xff1a; 宏观经济环境与货币政策&#xff1a; 当前中国经济增速已转向高质量发展阶段…

【Redis一】Redis配置与优化

目录 一.关系型数据库与非关系型数据库 1.关系型数据库 2.非关系型数据库 3.二者区别 4.非关系型数据库产生背景 5.NoSQL与SQL数据记录对比 关系型数据库 非关系型数据库 二.Redis相关概述 1.简介 2.五大数据类型 3.优缺点 3.1.优点 3.2.缺点 4.使用场景 5.采用…

苹果应用Testflight上架完整步聚

1.全部选中下图内容,包含iPhone与iPad屏幕所有旋转方向 2. 准备App图标,一定要有152和167这个尺寸,不然后提交不过 3.1024这个尺寸的的图像不能有透明层,不然提交不通过 4.选中编译设备为Any iOS Device[arm64] 5.选择Product下的Archive进行生成 6.在弹出的窗口中选择Test…

Python之三大基本库——Numpy(2)

接着上次的内容接着讲&#xff0c;连续号都续上哈 七、numpu中random的随机生成函数 以下总结的是比较常用到的函数&#xff1a; 下面分别介绍一下不用的用法&#xff1a; 首先导入创建函数 import numpy as np np.random.seed(666)1、 rand(d0,d1,d2,...,dn)&#xff1a;返…