C/C++ Adaline自适应线性神经网络算法详解及源码

个人名片
在这里插入图片描述
🎓作者简介:java领域优质创作者
🌐个人主页:码农阿豪
📞工作室:新空间代码工作室(提供各种软件服务)
💌个人邮箱:[2435024119@qq.com]
📱个人微信:15279484656
🌐个人导航网站:www.forff.top
💡座右铭:总有人要赢。为什么不能是我呢?

  • 专栏导航:

码农阿豪系列专栏导航
面试专栏:收集了java相关高频面试题,面试实战总结🍻🎉🖥️
Spring5系列专栏:整理了Spring5重要知识点与实战演练,有案例可直接使用🚀🔧💻
Redis专栏:Redis从零到一学习分享,经验总结,案例实战💐📝💡
全栈系列专栏:海纳百川有容乃大,可能你想要的东西里面都有🤸🌱🚀

标题:C/C++ Adaline自适应线性神经网络算法详解及源码

目录

      • 1. 简介
      • 2. 原理
      • 3. 实现步骤
        • 3.1 初始化权重
        • 3.2 前向传播
        • 3.3 计算误差
        • 3.4 更新权重
        • 3.5 重复步骤2-4
      • 4. 源码示例
      • 5. 总结

1. 简介

Adaline(自适应线性神经元)是一种用于模式分类的线性神经网络。它与感知器类似,但具有一些改进,如使用连续的激活函数和梯度下降算法进行权重调整。本文将介绍Adaline算法的原理、实现步骤以及用C/C++编写的源码。

2. 原理

Adaline的原理类似于感知器,但是输出不是一个离散的值,而是一个连续的值。它的输入与输出之间存在一个线性关系:

[ y = \sum_{i=1}^{n} w_i \cdot x_i ]

其中,( y ) 是输出,( w_i ) 是权重,( x_i ) 是输入。

Adaline的学习算法是基于梯度下降的。它的目标是最小化预测输出与实际输出之间的误差,即最小化成本函数:

[ J(w) = \frac{1}{2} \sum_{i=1}^{n} (target_i - output_i)^2 ]

通过梯度下降法更新权重,使得成本函数逐步减小,最终达到收敛。

3. 实现步骤

3.1 初始化权重

初始化权重 ( w_i ),可以随机初始化或者使用零值初始化。

3.2 前向传播

对于每个输入样本,计算输出 ( y ):

[ y = \sum_{i=1}^{n} w_i \cdot x_i ]

3.3 计算误差

计算预测输出与实际输出之间的误差:

[ error = target - output ]

3.4 更新权重

根据误差使用梯度下降法更新权重:

[ w_i = w_i + \alpha \cdot error \cdot x_i ]

其中,( \alpha ) 是学习率。

3.5 重复步骤2-4

重复执行前向传播、计算误差和更新权重的步骤,直到达到收敛或者达到最大迭代次数。

4. 源码示例

下面是一个使用C/C++编写的简单的Adaline算法示例:

#include <iostream>
#include <vector>using namespace std;class Adaline {
private:vector<double> weights;double learningRate;public:Adaline(int inputSize, double alpha) : learningRate(alpha) {// Initialize weights with zerosweights.resize(inputSize, 0.0);}double predict(vector<double>& inputs) {double output = 0.0;for (int i = 0; i < inputs.size(); ++i) {output += weights[i] * inputs[i];}return output;}void train(vector<vector<double>>& trainingData, vector<double>& targets, int epochs) {for (int epoch = 0; epoch < epochs; ++epoch) {for (int i = 0; i < trainingData.size(); ++i) {double prediction = predict(trainingData[i]);double error = targets[i] - prediction;for (int j = 0; j < weights.size(); ++j) {weights[j] += learningRate * error * trainingData[i][j];}}}}
};int main() {vector<vector<double>> trainingData = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};vector<double> targets = {-1, -1, -1, 1};Adaline adaline(2, 0.1);adaline.train(trainingData, targets, 1000);// Test the trained modelfor (int i = 0; i < trainingData.size(); ++i) {cout << "Input: " << trainingData[i][0] << ", " << trainingData[i][1] << " Output: " << adaline.predict(trainingData[i]) << endl;}return 0;
}

5. 总结

通过本文的介绍,你了解了Adaline算法的原理、实现步骤,并通过C/C++源码示例实现了一个简单的Adaline模型。希望本文对你有所帮助,欢迎在评论区分享你的想法和建议!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高阶数据结构[2]图的初相识

图的初相识 1.前言 2.图的概念 3.图的相关术语 4.图的存储结构 4.1邻接矩阵 4.2邻接表 4.3两种存储方式的对比 5.图的存储实现 5.1邻接矩阵的实现 5.2邻接表的实现 6.总结 1.前言 本章将大家学习数据结构中的“图”。有学习过离散数学的同学对这一章节或许会比…

【归并排序】| 详解归并排序核心代码之合并两个有序数组 力扣88

&#x1f397;️ 主页&#xff1a;小夜时雨 &#x1f397;️专栏&#xff1a;动态规划 &#x1f397;️如何活着&#xff0c;是我找寻的方向 目录 1. 题目解析2. 代码 1. 题目解析 题目链接: https://leetcode.cn/problems/merge-sorted-array/description/ 本道题是归并排序的…

超拟人大模型:AI心理健康服务的未来

摘要&#xff1a; 周末听了一场聆心智能关于情感LLM的分享&#xff0c;总结了相关内容如下。在人工智能技术的浪潮中&#xff0c;超拟人大模型技术为心理健康服务领域带来了革命性的变化。本文将分析超拟人大模型的进展、CharacterGLM模型的特点、Emohaa模型的应用以及心理健康…

AI 挑战周杰伦?Suno 全新功能面世,即兴哼几句就能创作成歌,还能模仿声音!...

作者 | 王启隆 出品丨AI 科技大本营&#xff08;ID&#xff1a;rgznai100&#xff09; 2016 年&#xff0c;周杰伦根据女儿 Hathaway 在玩具钢琴上随意弹出的几个音符&#xff0c;激发出创作的灵感&#xff0c;谱写了一首温馨而深情的歌曲——《前世情人》。8 年过去&#xff0…

【每日随笔】摩托车控车 ① ( 油离配合 | 落脚油离配合 - 不给油 | 落脚油离配合 - 给油 | 正式油离配合 | 骑行姿态注意事项 )

文章目录 一、找 " 离合结合点 "二、落脚油离配合 ( 不给油 )1、该科目练习目的2、起步姿态3、开始练习 三、落脚油离配合 ( 给油 )1、练习目的2、熟悉油门转速3、练习步骤 四、正式油离配合1、练习目的2、练习步骤3、练习效果 五、骑行姿态注意事项1、基本骑行姿态2…

Cisco Packet Tracer实验(四)

生成树协议&#xff08;Spanning Tree Protocol&#xff09; 交换机在目的地址未知或接收到广播帧时是要进行广播的。如果交换机之间存在回路/环路&#xff0c;那么就会产生广播循环风暴&#xff0c;从而严重影响网络性能。 而交换机中运行的STP协议能避免交换机之间发生广播…

解决Qt的multimedia库在clion中依赖库补全的问题

解决Qt的multimedia库在clion中使用报错的问题 在clion中&#xff0c;使用Qt的multimedia库时会报如下错误&#xff1a; defaultServiceProvider::requestService(): no service found for - "org.qt-project.qt.mediaplayer" 我猜测出现这个错误的原因很可能是因为…

迅狐短视频矩阵管理系统核心功能

一、多平台管理&#xff1a;连接多个主流自媒体平台&#xff0c;满足多平台、多账号、多角色的协调需求 在现如今的多元化媒体环境中&#xff0c;一个优秀的内容创作者需要同时管理多个自媒体平台&#xff0c;并以不同的身份角色展现自己。迅狐短视频矩阵管理系统强大的多平台…

数据结构重要知识总结

数组 数组&#xff08;Array&#xff09; 是一种很常见的数据结构。它由相同类型的元素&#xff08;element&#xff09;组成&#xff0c;并且是使用一块连续的内存来存储。 我们直接可以利用元素的索引&#xff08;index&#xff09;可以计算出该元素对应的存储地址。 数组…

如何充分利用 Postgres 的内存设置

为了充分利用 PostgreSQL 的内存设置&#xff0c;你需要调整多个参数以优化数据库性能。这些参数包括共享缓冲区&#xff08;shared_buffers&#xff09;、工作内存&#xff08;work_mem&#xff09;、维护工作内存&#xff08;maintenance_work_mem&#xff09;、有效缓存大小…

仅凭一图,即刻定位,AI图像定位技术

AI图像定位技术&#xff0c;解锁空间密码&#xff01;仅凭一图&#xff0c;即刻定位&#xff0c;精准至经纬度坐标&#xff0c;让世界无处不晓。 试试看能否猜中这张自拍照的背景所在&#xff1f;可别低估了A的眼力&#xff0c;答案说不定会让你大吃一惊呢。 近期&#xff0c;…

JWT令牌、过滤器Filter、拦截器Interceptor

目录 JWT令牌 简介 JWT生成 解析JWT 登陆后下发令牌 过滤器(Filter) Filter快速入门 Filter拦截路径 过滤器链 登录校验Filter-流程 拦截器(Interceptor) Interceptor 快速入门 拦截路径 登录校验流程 JWT令牌 简介 全称:JSON Web Token(https://iwt.io/) …

React 中的事件处理

React 中是如何处理事件的&#xff0c;现在下面简单的一段代码&#xff1a; export default function App() {const AList lazy(()>import(./List.js))const r useRef(null) const [show, setShow] useState(false);return (<><button onFocus{()>{setShow…

【StructueEngineering】Wind Load Combination Patterns风荷载组合模式

文章目录 Combination PatternsBasic Rules of Combinations组合的基本规律Specific Combination Patterns1. First 8 Combinations (1 to 8)2. Middle 8 Combinations (9 to 16)3. Last 8 Combinations (17 to 24) Summary of CombinationsKey Variables and Parameters with …

Postgre 调优工具pgBadger部署

一&#xff0c;简介&#xff1a; pgBadger&#xff08;日志分析器&#xff09;类似于oracle的AWR报告&#xff08;基于1小时&#xff0c;一天&#xff0c;一周&#xff0c;一月的报告&#xff09;&#xff0c;以图形化的方式帮助DBA更方便的找到隐含问题。 pgbadger是为了提高…

轻松上手MYSQL:探索MySQL索引数据结构的奥秘-让数据库飞起来

​&#x1f308; 个人主页&#xff1a;danci_&#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL》&#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 ✨欢迎加入探索MYSQL索引数据结构之旅✨ &#x1f44b; 大家好&#xff01;文本学习研…

代理IP协议有何区别?深入了解 SOCKS5、HTTP 代理

在数字通信领域&#xff0c;数据安全和匿名性都是非常重要的指标。互联网的不断发展催生了几种协议&#xff0c;每种协议都有独特的优势和挑战。其中&#xff0c;SOCKS5 代理、HTTP代理最为广泛使用&#xff0c;下面给大家一起讨论&#xff0c;HTTP代理与 SOCKS5代理&#xff0…

基于python深度学习的CNN图像识别鲜花-含数据集+pyqt界面

代码下载&#xff1a; https://download.csdn.net/download/qq_34904125/89383615 本代码是基于python pytorch环境安装的。 下载本代码后&#xff0c;有个requirement.txt文本&#xff0c;里面介绍了如何安装环境&#xff0c;环境需要自行配置。 或可直接参考下面博文进行…

Linux:基础IO(二.缓冲区、模拟一下缓冲区、详细讲解文件系统)

上次介绍了&#xff1a;Linux&#xff1a;基础IO&#xff08;一.C语言文件接口与系统调用、默认打开的文件流、详解文件描述符与dup2系统调用&#xff09; 文章目录 1.缓冲区1.1概念1.2作用与意义 2.语言级别的缓冲区2.1刷新策略2.2具体在哪里2.3支持格式化 3.自己来模拟一下缓…