[卷积神经网络]YoloV8

一、YoloV8

1.网络详解

        ①backbone部分:第一次卷积的卷积核缩小(由3变为6);CSP模块的预处理卷积从3次变为2次;借鉴了YoloV7的多分支堆叠结构(Multi_Concat_Block)。

                所小第一次卷积的卷积核尺寸会损失部分感受野,但是可以加速整个网络的运算速度。同时CSP模块借鉴了多分支堆叠结构,首先使用卷积将通道数扩充为原来的一倍,然后在此基础上进行对半分割(减少一次卷积次数,加速网络)

        ②FPN部分:不再对骨干网络的特征层进行卷积(可以有效加快计算速度),另外CSP模块预处理次数变为2次。

                FPN获取的特征向量分别来自骨干网络的中层(feat1=80x80x256),中下层(feat2=40x40x512),底层(feat3=20x20x1024*deep_mul,其中,deep_mul为深层缩放系数,用一以平衡计算量)。

        上采样部分:

                feat3经过上采样后与feat2融合后再由CSP模块进行减半得到特征向量P4(40x40x512)

                P4经过上采样后与feat1融合后再由CSP模块进行减半得到特征向量P3(80x80x256)

        下采样部分:

                P3经过一次下采样(3x3卷积)与P4 concat,再使用CSP模块进行特征提取,得到新P4(40x40x512)

                新P4同样适用3x3卷积处理后与P5concat,在使用CSP处理,得到新P5(20x20x1024xdeep_mul)

        最后FPN模块输出P3新P4新P5,可以很好的结合多尺度特征。

        ③预测头部分:加入DFL模块;同时借鉴了YoloX的anchor free结构,对一些长宽不规则的目标具有优势。

                DFL模块的加入使得Yolo Head不会直接获得回归值,而是通过概率的方式的方式获得回归值,若DFL的长度设为8,那么计算方法如下:

预测结果的softmax值0.00.10.00.00.40.50.00.0点乘
固定值012345670.1*1+0.4*4+0.5*5=4.2

2.Yolo Head的编码

        经过模型处理后,会得到3个输出结果,设类别数为num_classes,结果如下:

                P3   :回归输出(20x20x4),种类输出(20x20x num_classes)

                新P4:回归输出(40x40x4),种类输出(40x40x num_classes)

                新P5:回归输出(80x80x4),种类输出(80x80x num_classes)

        其中,回归输出的前两个元素代表预测框左上角的位置,后两个元素代表预测框右下角的位置,种类输出的参数为每个类的概率。

        将上述结果fatten后得到总回归输出(8400x4),种类输出(8400x num_classes),经过得分排序非极大抑制筛选后,满足置信度(confidence)的预测框将被输出。其中,非极大抑制的作用是筛选出一定区域内同一种类得分最大的框。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/1255.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年 10 款最佳免费数据恢复软件您值得收藏

免费的数据恢复软件或工具是最重要的工具之一,在我们的生活中发挥着非常重要和关键的作用,尽管现在您可以找到数十种,但事实是它们非常重要。 由于设备故障、勒索软件攻击或意外擦除数据而从设备中丢失数据可能会成为一个真正的头痛问题。 …

专题【二分查找】刷题日记

题目列表 4. 寻找两个正序数组的中位数 33. 搜索旋转排序数组 34. 在排序数组中查找元素的第一个和最后一个位置 35. 搜索插入位置 69. x 的平方根 167. 两数之和 II - 输入有序数组 209. 长度最小的子数组 222. 完全二叉树的节点个数 287. 寻找重复数 2023.04.14 4. 寻找两…

自然语言处理基础面试

文章目录 TF-IDFbag-of-wordsBert 讲道理肯定还得有Transformer,我这边先放着,以后再加吧。 TF-IDF TF(全称TermFrequency),中文含义词频,简单理解就是关键词出现在网页当中的频次。 IDF(全称…

spring boot: 使用MyBatis从hive中读取数据

一、hive表&#xff1a; 启动hiveserver2 二、添加mybatis starter和hive依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instan…

力扣HOT100 - 24. 两两交换链表中的节点

解题思路&#xff1a; 递归 class Solution {public ListNode swapPairs(ListNode head) {if (head null || head.next null) {return head;}ListNode newHead head.next;head.next swapPairs(newHead.next);newHead.next head;return newHead;} }

案例实践 | InterMat:基于长安链的材料数据发现与共享系统

案例名称&#xff1a;InterMat-基于区块链的材料数据发现与共享系统 ■ 建设单位 北京钢研新材科技有限公司 ■ 用户群体 材料数据上下游单位 ■ 应用成效 已建设10共识节点、50轻节点&#xff0c;1万注册用户 案例背景 材料是构成各种装备和工程的物质载体&#xff0c…

驱动开发-windows驱动设计目标

驱动程序和应用程序不一样的&#xff0c;由于其直接运行于windows r0级&#xff0c;故对于开发有更多和更严格的标准&#xff0c;一般会有以下一些常见的设计目标: 安全性、可移植性、可配置性、 可被中断、多处理器安全、可重用 IRP、 支持异步 I/O这些是基本目标。 1. 安全…

高频前端面试题汇总之Vue篇

1. Vue的基本原理 当一个Vue实例创建时&#xff0c;Vue会遍历data中的属性&#xff0c;用 Object.defineProperty&#xff08;vue3.0使用proxy &#xff09;将它们转为 getter/setter&#xff0c;并且在内部追踪相关依赖&#xff0c;在属性被访问和修改时通知变化。 每个组件实…

Flutter 之 HTTP3/QUIC 和 Cronet 你了解过吗?

虽然 HTTP3/QUIC 和 cronet 跟 Flutter 没太大关系&#xff0c;只是最近在整理 Flutter 相关资料时发现还挺多人不了解&#xff0c;就放到一起聊聊。 本篇也是主要将现有资料做一些简化整合理解。 前言 其实为什么会有 HTTP3/QUIC &#xff1f;核心原因还是现有协议已经无法满…

机器学习周记(第三十五周:语义分割)2024.4.15~2024.4.21

目录 摘要 ABSTRACT 1 语义分割基本概念 1.1 数据集格式 ​编辑 1.2 语义分割评价指标 1.3 语义分割标注工具 2 转置卷积 3 FCN网络结构基本原理 摘要 本周主要学习了语义分割的基本概念及其在计算机视觉领域中的应用。了解了语义分割的几种经典网络&#xff0c;如全卷…

linux系统密码重置的方法

在linux系统中忘记密码&#xff0c;重置&#xff08;重启&#xff1a;shutdown -r now&#xff09; 1、在启动 Linux 时&#xff0c;按键盘上的上下左右键来止 Linux 的正常启动。 2、按下e鍵进入安全模式 3、找到首行是linux16&#xff0c;末尾是UTF-8的段落&#xff0c;在后门…

Python中的设计模式与最佳实践

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python中的设计模式与最佳实践 在软件开发中&#xff0c;设计模式是一种解决常见问题的经过…

【Django】调用django的pbkdf2_sha256加密算法测试

基于django搭建的系统中&#xff0c;用到pbkdf2_sha256&#xff08;&#xff08;Password-Based Key Derivation Function 2&#xff09;&#xff09;加密算法&#xff0c;这里做些代码测试、总结。 PBKDF2简介 PBKDF2是一种基于密码的密钥派生函数&#xff0c;用于从用户提供的…

2024-4-狼道

2024-4-狼道 2024-4-9 宋犀堃&#xff08;堃通坤&#xff0c;多用于人名&#xff09; fatux&#xff1a; 做人当如狗&#xff0c;和蔼可亲&#xff1b;做事当如狼&#xff0c;专注果决。 狼道 智慧生存的强者法则 走向卓越的成功之道 狼道&#xff0c;是追求卓越的野心&am…

C++_特殊类的设计和单例模式

文章目录 学习目标&#xff1a;1.请设计一个类&#xff0c;不能被拷贝2. 请设计一个类&#xff0c;只能在堆上创建对象3. 请设计一个类&#xff0c;只能在栈上创建对象4. 请设计一个类&#xff0c;不能被继承5. 请设计一个类&#xff0c;只能创建一个对象(单例模式) 特殊类的设…

如何在原生项目中集成flutter

两个前提条件&#xff1a; 从flutter v1.17版本开始&#xff0c;flutter module仅支持AndroidX的应用在release模式下flutter仅支持一下架构&#xff1a;x84_64、armeabi-v7a、arm6f4-v8a,不支持mips和x86;所以引入flutter前需要在app/build.gradle下配置flutter支持的架构 a…

《设计模式之美》- 总结

《设计模式之美》- 总结 第一章 概述 1.1 为什么学习代码设计 编写高质量的代码应对复杂代码的开发程序员的基本功职业发展的必备技能 1.2 如何评价代码的质量 1.2.1 可维护性 可维护性代码的特性&#xff1a;代码简洁、可读性好、可扩展性好代码分层结构清晰、模块化程度…

maven问题汇总

​ 1、报错 failed to transfer from http://0.0.0.0/ during a previous attempt. com.byd.xxx:xxx-parent:pom:1.1.0-SNAPSHOT failed to transfer from http://0.0.0.0/ during a previous attempt. This failure was cached in the local repository and resolution is no…

【Pytorch】PytorchCPU版或GPU报错异常处理(10X~4090D)

Pytorch为CPU版或GPU使用报错异常处理 文章目录 Pytorch为CPU版或GPU使用报错异常处理0.检查阶段1. 在conda虚拟环境中安装了torch2.卸载cpuonly3.从tsinghua清华源安装不完善误为cpu版本4.用tsinghua清华源安装成cpu错误版本5.conda中torch/vision/cudatoolkit版本与本机cuda版…

LeetCode - 283.移动零

题目链接&#xff1a; LeetCode - 283.移动零 题目分析&#xff1a; ​​​​​ 题解代码&#xff1a; #include<iostream> #include<vector> using namespace std;class Solution { public:void moveZeroes(vector<int>& nums) {for (int cur 0, des…