专题【二分查找】刷题日记

题目列表

4. 寻找两个正序数组的中位数
33. 搜索旋转排序数组
34. 在排序数组中查找元素的第一个和最后一个位置
35. 搜索插入位置
69. x 的平方根
167. 两数之和 II - 输入有序数组
209. 长度最小的子数组
222. 完全二叉树的节点个数
287. 寻找重复数


2023.04.14

4. 寻找两个正序数组的中位数

题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

思路

  1. 总元素个数如果是奇数
  2. 每一个数组都找中间的指针
  3. 如果对于这俩指针, 左右恰巧数量一样,就返回这俩指针对应的元素(奇数返回小的,偶数返回两个的平均)
  4. a[0], …, a[i],…a[m-1],b[0],…,b[j],…b[n-1],左右一样指a[0]…a[i]元素个数加上b[0]…b[j]元素个数和剩余部分一致,并且a[i-1]<b[j]<a[i+1] && b[j-1] < a[i] < b[j+1],即a[i]的坐边小于b[j]、b[j]的左边小于a[i]、a[i]的右边大于b[j]、b[j]的右边大于a[i]
  5. 否则使用二分查找其中一个,同时调整另一个元素的个数,始终保持,左右元素相等,直到满足上述第二个条件

答案

class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {int m = nums1.length;int n = nums2.length;if (m > n) {// 从短的做遍历。为了避免处理nums2的边界return findMedianSortedArrays(nums2, nums1);}int halfNum = (m + n + 1) / 2;int left = 0, right = m;int leftMax = 0, rightMin = 0;while (left <= right) {// 防溢出int middle1 = left + (right - left) / 2;int middle2 = halfNum - middle1;// i_1要处理左溢出即==0的判断,i本身要处理右溢出即==m// MAX_VALUE还是MIN_VALUE是从max还是min赋值的,反正就是取合法的那边int ai_1 = middle1 == 0 ? Integer.MIN_VALUE : nums1[middle1 - 1];int ai = middle1 == m ? Integer.MAX_VALUE : nums1[middle1];int bj_1 = middle2 == 0 ? Integer.MIN_VALUE : nums2[middle2 - 1];int bj = middle2 == n ? Integer.MAX_VALUE : nums2[middle2];// 满足条件就记录if (ai_1 <= bj) {leftMax = Math.max(ai_1, bj_1);rightMin = Math.min(ai, bj);left = middle1 + 1;} else {right = middle1 - 1;}}// 满足条件才更新,所以直接返回return ((m + n) % 2 == 0) ? (leftMax + rightMin) / 2.0 : leftMax;}
}

33. 搜索旋转排序数组

题目

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4

示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1

示例 3:

输入:nums = [1], target = 0
输出:-1

提示:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • nums 中的每个值都 独一无二
  • 题目数据保证 nums 在预先未知的某个下标上进行了旋转
  • -104 <= target <= 104

思路

核心是找到在哪边搜索

  1. 先判断哪边是有序的
  2. 如果目标值在有序的这边,就在这边,否则在另一边

答案

class Solution {public int search(int[] nums, int target) {return search(nums, target, 0, nums.length - 1);}public int search(int[] nums, int target, int left, int right) {// 递归的边界if (left > right) {return -1;}int middle = left + (right - left) / 2;int value = nums[middle];// 递归的终止条件if (value == target) {return middle;} // 左边有序if (nums[left] <= value) {// 因为左边有序,所以判断在不在左边范围内,在的话就在左边if (target < value && nums[left] <= target) {return search(nums, target, left, middle - 1);} else {return search(nums, target, middle + 1, right);}} else {// 右边同理if (target > value && target <= nums[right]) {return search(nums, target, middle + 1, right);} else {return search(nums, target, left, middle - 1);}}}
}

34. 在排序数组中查找元素的第一个和最后一个位置

题目

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

思路

和普通二分的区别是搜索到之后的动作

  1. 搜索最左边的话,就一直把右边界往左边移动。
  2. 右边同理,详见注释

答案

class Solution {public int[] searchRange(int[] nums, int target) {if (nums.length == 0) {return new int[] { -1, -1 };}return new int[] { lBsearch(nums, target, 0, nums.length - 1), rBsearch(nums, target, 0, nums.length - 1) };}public int lBsearch(int[] nums, int target, int left, int right) {// 因为左右都是闭区间,所以相等while (left <= right) {int middle = left + (right - left) / 2;int value = nums[middle];if (value < target) {left = middle + 1;} else {// 相等就移动右边界right = middle - 1;}}// 考虑剩两个元素的时候,[m, target],这时候middle==left, m < target,最后右移一步。所以最后,如果有left一定指向元素// 考虑剩两个元素的时候,[target, target],这时候middle==left, 最后左移一步。所以最后,如果有left一定指向元素// 一些边界判断return left >= 0 && left < nums.length && nums[left] == target ? left : -1;}// 同搜索左边界public int rBsearch(int[] nums, int target, int left, int right) {while (left <= right) {int middle = left + (right - left) / 2;int value = nums[middle];if (value <= target) {left = middle + 1;} else {right = middle - 1;}}return right >= 0 && right < nums.length && nums[right] == target ? right : -1;}
}

2024.04.19

35. 搜索插入位置

题目

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 为 无重复元素 的 升序 排列数组
  • -104 <= target <= 104

思路

比二分查找,要多考虑下,最后left和right的位置关系
考虑两个元素的时候[m, n], m < target < n, nums[middle] = m < target,移动right,left和right重合在m,最后一次,right-1,left不动

答案

class Solution {public int searchInsert(int[] nums, int target) {int left = 0, right = nums.length - 1;// 闭区间,所以=while (left <= right) {int middle = left + (right - left) / 2;int value = nums[middle];if (value == target) {return middle;} else if (value < target) {left = middle + 1;} else {right = middle - 1;}}return left;}
}

69. x 的平方根

题目

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 2^31 - 1

思路

0-x一半一半逼近,因为1 = 1 x 1, 所以x是闭区间

答案

class Solution {public int mySqrt(int x) {// 边界0,1if (x < 2) {return x;}int left = 0, right = x;while (left <= right) {int middle = left + (right - left) / 2;if (x / middle == middle) {return middle;} else if (x / middle < middle) {right = middle - 1;} else {left = middle + 1;}}// 2.8取2,所以-1return left - 1;}
}

167. 两数之和 II - 输入有序数组

题目

给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] ,则 1 <= index1 < index2 <= numbers.length 。

以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 和 index2。

你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。

你所设计的解决方案必须只使用常量级的额外空间。

示例 1:

输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。

示例 2:

输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。

示例 3:

输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。

提示:

  • 2 <= numbers.length <= 3 * 104
  • -1000 <= numbers[i] <= 1000
  • numbers 按 非递减顺序 排列
  • -1000 <= target <= 1000
  • 仅存在一个有效答案

思路

因为有序,固定一个,另一个用二分

答案

// 二分,O(n log(n))
class Solution {public int[] twoSum(int[] numbers, int target) {for (int i = 0; i < numbers.length; i++) {int current = numbers[i];int left = i + 1;int right = numbers.length - 1;while (left <= right) {int middle = left + (right - left) / 2;if (current + numbers[middle] == target) {return new int[] { i + 1, middle + 1 };} else if (current + numbers[middle] < target) {left = middle + 1;} else {right = middle - 1;}}}return new int[] { -1, -1 };}
}
// 双指针 O(n)
class Solution {public int[] twoSum(int[] numbers, int target) {int left = 0, right = numbers.length - 1;while (left < right) {int leftValue = numbers[left];int rightValue = numbers[right];if (leftValue + rightValue == target) {return new int[] { left + 1, right + 1 };} else if (leftValue + rightValue < target) {left++;} else {right--;}}return new int[] { -1, -1 };}
}

209. 长度最小的子数组

题目

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其总和大于等于 target 的长度最小的 连续
子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

提示:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

进阶:

  • 如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。

思路

  1. 滑动窗口
  2. 前缀和+二分搜索。二分一定要有序,前缀和可以做到

答案

// 滑动窗口
class Solution {public int minSubArrayLen(int target, int[] nums) {int result = Integer.MAX_VALUE;int left = 0, right = 0;int sum = 0;while (right < nums.length) {sum += nums[right];while (sum >= target && left <= right) {result = Math.min(result, right - left + 1);sum -= nums[left++];}right++;}return result == Integer.MAX_VALUE ? 0 : result;}
}
// 前缀和+二分
class Solution {public int minSubArrayLen(int target, int[] nums) {int[] sums = new int[nums.length + 1];int sum = 0;for (int i = 1; i < sums.length; i++) {sum += nums[i - 1];sums[i] = sum;}int result = Integer.MAX_VALUE;for (int i = 0; i < sums.length; i++) {int current = sums[i];int left = i + 1, right = sums.length - 1;while (left <= right) {int middle = left + (right - left) / 2;int value = sums[middle];if (value - current >= target) {result = Math.min(result, middle - i);right = middle - 1;} else {left = middle + 1;}}}return result == Integer.MAX_VALUE ? 0 : result;}
}

222. 完全二叉树的节点个数

题目

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:
在这里插入图片描述

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树

进阶: 遍历树来统计节点是一种时间复杂度为 O(n) 的简单解决方案。你可以设计一个更快的算法吗?

思路

  1. 因为是完全二叉树
  2. 求左右树的高度,如果相等,则说明左子树是完全二叉树,左子树元素个数是2左子树的高度-1,再加上根节点,就是2左子树的高度
  3. 如果不相等,说明右子树是完全二叉树,算法同2

答案

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int countNodes(TreeNode root) {if (root == null) {return 0;}int left = high(root.left);int right = high(root.right);if (left == right) {// 左子树是完全二叉树,左子树加右边的数量return countNodes(root.right) + (1 << left);} else {// 右子树是完全二叉树,右子树加左边的数量return countNodes(root.left) + (1 << right);}}public int high(TreeNode root) {int result = 0;while (root != null) {result++;root = root.left;}return result;}
}

287. 寻找重复数

题目

给定一个包含 n + 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),可知至少存在一个重复的整数。
假设 nums 只有 一个重复的整数 ,返回 这个重复的数 。
你设计的解决方案必须 不修改 数组 nums 且只用常量级 O(1) 的额外空间。

示例 1:

输入:nums = [1,3,4,2,2]
输出:2

示例 2:

输入:nums = [3,1,3,4,2]
输出:3

示例 3 :

输入:nums = [3,3,3,3,3]
输出:3

提示:

  • 1 <= n <= 105
  • nums.length == n + 1
  • 1 <= nums[i] <= n
  • nums 中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次

进阶:

  • 如何证明 nums 中至少存在一个重复的数字?
  • 你可以设计一个线性级时间复杂度 O(n) 的解决方案吗?

思路

之前双指针有过,这次换个思路
要二分,必须有单调数组,有点像定义DP数组了、本次定义cnt[i]表示小于等于i的元素数量,有点像前缀和的逻辑,记住吧。数组构造单调数组有两个办法:前缀和、cnt[i]
如果数组中只有一个重复元素,根据题意 nums.length == n + 11 <= nums[i] <= n,其实必然重复(n+1个位置,只有n个元素)。则重复元素之前,cnt[i] == i,[1,2,3,4,5,6,5,7,8],这种cnt[0-4] = [0-4],因为可能重复多个,所以cnt[i] <= i
用二分找到这个就行了,就是哪个位置开始出现不小于等于

答案

class Solution {public int findDuplicate(int[] nums) {int left = 0, right = nums.length - 1;int result = 0;// 找数,数在0-n之间(根据题意nums.length==n+1),搜索的是小于等于xxxwhile (left <= right) {// 二分找数int middle = left + (right - left) / 2;// 计算cntint cnt = 0;for (int i = 0; i < nums.length; i++) {// 遍历数组,小于等于middle的数个数if (nums[i] <= middle) {cnt++;}}// 是不是满足条件,满足说明数小了if (cnt <= middle) {left = middle + 1;} else {// 记录下,因为可能是大于target的,所以继续搜索// [1,2,3,4,5,6,5,7,8],cnt[6] = 7, cnt[5] = 6, cnt[8] = 8,都满足条件,所以继续搜索result = middle;right = middle - 1;}}return result;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/1253.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理基础面试

文章目录 TF-IDFbag-of-wordsBert 讲道理肯定还得有Transformer&#xff0c;我这边先放着&#xff0c;以后再加吧。 TF-IDF TF&#xff08;全称TermFrequency&#xff09;&#xff0c;中文含义词频&#xff0c;简单理解就是关键词出现在网页当中的频次。 IDF&#xff08;全称…

spring boot: 使用MyBatis从hive中读取数据

一、hive表&#xff1a; 启动hiveserver2 二、添加mybatis starter和hive依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instan…

力扣HOT100 - 24. 两两交换链表中的节点

解题思路&#xff1a; 递归 class Solution {public ListNode swapPairs(ListNode head) {if (head null || head.next null) {return head;}ListNode newHead head.next;head.next swapPairs(newHead.next);newHead.next head;return newHead;} }

案例实践 | InterMat:基于长安链的材料数据发现与共享系统

案例名称&#xff1a;InterMat-基于区块链的材料数据发现与共享系统 ■ 建设单位 北京钢研新材科技有限公司 ■ 用户群体 材料数据上下游单位 ■ 应用成效 已建设10共识节点、50轻节点&#xff0c;1万注册用户 案例背景 材料是构成各种装备和工程的物质载体&#xff0c…

驱动开发-windows驱动设计目标

驱动程序和应用程序不一样的&#xff0c;由于其直接运行于windows r0级&#xff0c;故对于开发有更多和更严格的标准&#xff0c;一般会有以下一些常见的设计目标: 安全性、可移植性、可配置性、 可被中断、多处理器安全、可重用 IRP、 支持异步 I/O这些是基本目标。 1. 安全…

高频前端面试题汇总之Vue篇

1. Vue的基本原理 当一个Vue实例创建时&#xff0c;Vue会遍历data中的属性&#xff0c;用 Object.defineProperty&#xff08;vue3.0使用proxy &#xff09;将它们转为 getter/setter&#xff0c;并且在内部追踪相关依赖&#xff0c;在属性被访问和修改时通知变化。 每个组件实…

Flutter 之 HTTP3/QUIC 和 Cronet 你了解过吗?

虽然 HTTP3/QUIC 和 cronet 跟 Flutter 没太大关系&#xff0c;只是最近在整理 Flutter 相关资料时发现还挺多人不了解&#xff0c;就放到一起聊聊。 本篇也是主要将现有资料做一些简化整合理解。 前言 其实为什么会有 HTTP3/QUIC &#xff1f;核心原因还是现有协议已经无法满…

机器学习周记(第三十五周:语义分割)2024.4.15~2024.4.21

目录 摘要 ABSTRACT 1 语义分割基本概念 1.1 数据集格式 ​编辑 1.2 语义分割评价指标 1.3 语义分割标注工具 2 转置卷积 3 FCN网络结构基本原理 摘要 本周主要学习了语义分割的基本概念及其在计算机视觉领域中的应用。了解了语义分割的几种经典网络&#xff0c;如全卷…

linux系统密码重置的方法

在linux系统中忘记密码&#xff0c;重置&#xff08;重启&#xff1a;shutdown -r now&#xff09; 1、在启动 Linux 时&#xff0c;按键盘上的上下左右键来止 Linux 的正常启动。 2、按下e鍵进入安全模式 3、找到首行是linux16&#xff0c;末尾是UTF-8的段落&#xff0c;在后门…

Python中的设计模式与最佳实践

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python中的设计模式与最佳实践 在软件开发中&#xff0c;设计模式是一种解决常见问题的经过…

【Django】调用django的pbkdf2_sha256加密算法测试

基于django搭建的系统中&#xff0c;用到pbkdf2_sha256&#xff08;&#xff08;Password-Based Key Derivation Function 2&#xff09;&#xff09;加密算法&#xff0c;这里做些代码测试、总结。 PBKDF2简介 PBKDF2是一种基于密码的密钥派生函数&#xff0c;用于从用户提供的…

2024-4-狼道

2024-4-狼道 2024-4-9 宋犀堃&#xff08;堃通坤&#xff0c;多用于人名&#xff09; fatux&#xff1a; 做人当如狗&#xff0c;和蔼可亲&#xff1b;做事当如狼&#xff0c;专注果决。 狼道 智慧生存的强者法则 走向卓越的成功之道 狼道&#xff0c;是追求卓越的野心&am…

C++_特殊类的设计和单例模式

文章目录 学习目标&#xff1a;1.请设计一个类&#xff0c;不能被拷贝2. 请设计一个类&#xff0c;只能在堆上创建对象3. 请设计一个类&#xff0c;只能在栈上创建对象4. 请设计一个类&#xff0c;不能被继承5. 请设计一个类&#xff0c;只能创建一个对象(单例模式) 特殊类的设…

如何在原生项目中集成flutter

两个前提条件&#xff1a; 从flutter v1.17版本开始&#xff0c;flutter module仅支持AndroidX的应用在release模式下flutter仅支持一下架构&#xff1a;x84_64、armeabi-v7a、arm6f4-v8a,不支持mips和x86;所以引入flutter前需要在app/build.gradle下配置flutter支持的架构 a…

《设计模式之美》- 总结

《设计模式之美》- 总结 第一章 概述 1.1 为什么学习代码设计 编写高质量的代码应对复杂代码的开发程序员的基本功职业发展的必备技能 1.2 如何评价代码的质量 1.2.1 可维护性 可维护性代码的特性&#xff1a;代码简洁、可读性好、可扩展性好代码分层结构清晰、模块化程度…

maven问题汇总

​ 1、报错 failed to transfer from http://0.0.0.0/ during a previous attempt. com.byd.xxx:xxx-parent:pom:1.1.0-SNAPSHOT failed to transfer from http://0.0.0.0/ during a previous attempt. This failure was cached in the local repository and resolution is no…

【Pytorch】PytorchCPU版或GPU报错异常处理(10X~4090D)

Pytorch为CPU版或GPU使用报错异常处理 文章目录 Pytorch为CPU版或GPU使用报错异常处理0.检查阶段1. 在conda虚拟环境中安装了torch2.卸载cpuonly3.从tsinghua清华源安装不完善误为cpu版本4.用tsinghua清华源安装成cpu错误版本5.conda中torch/vision/cudatoolkit版本与本机cuda版…

LeetCode - 283.移动零

题目链接&#xff1a; LeetCode - 283.移动零 题目分析&#xff1a; ​​​​​ 题解代码&#xff1a; #include<iostream> #include<vector> using namespace std;class Solution { public:void moveZeroes(vector<int>& nums) {for (int cur 0, des…

【GitBlit】Windows搭建Git服务器详细教程

前言 如果公司或个人想在 Windows 环境下搭建私有的 Git 服务器&#xff0c;那么这个开源的 GitBlit 是一个不错的选择。 Gitblit 是一个开源纯 Java 的用于管理、查看和服务 Git 存储库。它是一个小型的托管集中式存储库工具。支持 SSH、HTTP 和 GIT 协议&#xff0c;开箱即…

Java+springboot开发的医院智能导诊服务系统源码 自动兼容小程序与H5版本

智能导诊系统 一、什么是智慧导诊系统&#xff1f; 智慧导诊系统是一种医院使用的引导患者自助就诊挂号、精准推荐科室、引导患者挂号就诊的系统。该系统结合医院挂号及就诊的HIS系统&#xff0c;为患者带来全流程的信息指引提醒&#xff0c;可以在全院区构建一个精细化、移动…