iot物联网平台开发/seo教程搜索引擎优化

iot物联网平台开发,seo教程搜索引擎优化,网站代码怎么做,央视十大广告代理公司以下是当前主流的大模型训练与推理框架的全面汇总 以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化: 一、通用深度学习推理框架 TensorRT-LLM 特点:NVIDIA推出的针对Transformer类模型的优化框架,支…

以下是当前主流的大模型训练与推理框架的全面汇总

在这里插入图片描述

以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化:


一、通用深度学习推理框架

  1. TensorRT-LLM

    • 特点:NVIDIA推出的针对Transformer类模型的优化框架,支持多GPU分布式推理和低精度量化。
    • 示例:加速BERT、GPT-3等模型推理,集成Kernel融合和矩阵乘优化技术。
  2. ONNX Runtime

    • 特点:跨框架模型部署工具,支持ONNX格式模型的硬件无关优化。
    • 示例:将PyTorch或TensorFlow模型转换为ONNX格式后部署到CPU/GPU。
  3. OpenVINO

    • 特点:英特尔开发的跨平台推理工具,支持CPU/VPU/FPGA硬件加速。
    • 示例:图像分类模型(如ResNet)在英特尔CPU上的高效推理。
  4. FasterTransformer

    • 特点:NVIDIA优化的Transformer推理库,支持Tensor Core加速。
    • 示例:BERT和GPT模型在NVIDIA GPU上的低延迟推理。
  5. MNN

    • 特点:阿里巴巴推出的轻量级推理框架,支持移动端和边缘设备。
    • 示例:移动端图像识别模型的部署。

二、大语言模型(LLM)专用框架

  1. vLLM

    • 特点:基于PagedAttention技术的高吞吐量引擎,支持动态批处理。
    • 示例:部署Llama、GPT-4等模型,吞吐量比HuggingFace高10倍以上。
  2. HuggingFace TGI (Text Generation Inference)

    • 特点:支持多GPU扩展和量化方案,兼容HuggingFace模型库。
    • 示例:部署Falcon-180B或Llama 2-70B等万亿参数模型。
  3. DeepSpeed-Inference

    • 特点:微软开发的分布式推理框架,集成ZeRO优化器和3D并行技术。
    • 示例:千亿参数模型(如Megatron-Turing NLG)的多节点推理。
  4. Llama.cpp

    • 特点:纯C++实现的轻量级推理引擎,支持CPU端4-bit量化。
    • 示例:在MacBook上运行Llama-7B模型,无需GPU。
  5. LMDeploy

    • 特点:支持模型量化、服务化部署和性能监控。
    • 示例:百川智能系列模型的低资源部署。
  6. SGLang

    • 特点:面向复杂提示工程的推理优化框架,通过结构化生成语言(Structured Generation Language)提升多轮对话、分支逻辑等场景的效率。
    • 示例:处理需要嵌套条件判断的复杂提示(如多步骤数学推理),通过缓存中间结果减少重复计算,响应速度提升30%以上。

三、新兴框架与工具

  1. TensorFlow Serving

    • 特点:专为TensorFlow模型设计的服务化框架,支持多版本管理。
    • 示例:部署TensorFlow SavedModel格式的分类模型。
  2. Ollama

    • 特点:用户友好的本地LLM运行工具,支持一键启动模型。
    • 示例:在本地运行Mistral或Gemma模型。
  3. MLC-LLM

    • 特点:支持多种硬件后端(如WebGPU、Vulkan)。
    • 示例:在浏览器中运行量化后的语言模型。
  4. PowerInfer

    • 特点:基于稀疏激活模式的CPU-GPU混合推理框架。
    • 示例:在消费级GPU上高效运行大型模型。

四、量化与压缩工具

  1. bitsandbytes

    • 特点:支持8-bit和4-bit量化,与HuggingFace无缝集成。
    • 示例:将Llama-2模型量化为4-bit后部署。
  2. AWQ (Activation-aware Weight Quantization)

    • 特点:基于激活感知的权重量化算法,精度损失小。
    • 示例:量化OPT-175B模型并保持90%以上准确率。
  3. GPTQ

    • 特点:基于梯度信息的后训练量化方法。
    • 示例:将BERT模型压缩至2-bit仍保持高精度。

五、其他特色框架

  1. LightLLM

    • 特点:极简设计,专注于低资源环境下的推理优化。
  2. ScaleLLM

    • 特点:支持千卡集群的超大规模模型推理。
  3. Llamafile

    • 特点:将模型与运行时打包为单个可执行文件,便于分发。

常用示例场景

场景推荐框架优势
高吞吐量在线服务vLLM、TGI动态批处理、PagedAttention优化
复杂提示工程SGLang结构化生成、中间结果复用
边缘设备部署Llama.cpp、MNN低资源消耗、支持CPU推理
多GPU分布式推理DeepSpeed、TensorRT-LLM3D并行、高效显存管理
快速原型开发Ollama、Transformers易用性高、社区支持完善
量化压缩bitsandbytes、AWQ低精度量化、最小化精度损失

总结

当前主流框架超过23种(完整列表可参考),核心选择需结合以下因素:

  1. 硬件环境:GPU型号(如NVIDIA/AMD)、CPU架构、边缘设备类型。
  2. 模型类型:Transformer类模型优先选vLLM或FasterTransformer,轻量化模型可选Llama.cpp。
  3. 部署需求:服务化场景用TGI或TensorRT-LLM,本地开发用Ollama或LM Studio。

如需完整框架列表及技术对比,可进一步查阅 大模型推理框架总结。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/72886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据分享第七弹]全球洪水相关数据集

洪水是一种常见的自然灾害,在全球范围内造成了极为严重的威胁。近年来,针对洪水事件的检测分析,以及对于洪水灾害和灾后恢复能力的研究日渐增多,也产生了众多洪水数据集。今天,我们一起来收集整理一下相关数据集。&…

Hive-数据倾斜优化

数据倾斜的原因 1)key分布不均匀,本质上就是业务数据有可能会存在倾斜 2)某些SQL语句本身就有数据倾斜 关键词 情形 后果 Join A、其中一个表较小,但是key集中; B、两张表都是大表,key不均 分发到…

RuleOS:区块链开发的“新引擎”,点燃Web3创新之火

RuleOS:区块链开发的“新引擎”,点燃Web3创新之火 在区块链技术的浪潮中,RuleOS宛如一台强劲的“新引擎”,为个人和企业开发去中心化应用(DApp)注入了前所未有的动力。它以独特的设计理念和强大的功能特性&…

Windows编译环境搭建(MSYS2\MinGW\cmake)

我的音视频/流媒体开源项目(github) 一、基础环境搭建 1.1 MSYS2\MinGW 参考:1. 基于MSYS2的Mingw-w64 GCC搭建Windows下C开发环境_msys2使用mingw64编译 在Widndows系统上,使用gcc工具链(g)进行C程序开发?可以的&a…

TikTok美国战略升级:聚焦美食旅行,本地化服务如何重塑市场格局

平台深耕本土内容生态,餐饮旅游创作者迎流量红利,算法推荐机制激发地域经济新活力 过去一年,TikTok在美国市场的动作频频引发行业关注。从早期以娱乐、舞蹈为主的全球化内容,到如今将资源向美食、旅行两大垂类倾斜,这…

Unity Dots环境配置

文章目录 前言环境配置1.新建Unity 工程2.安装Entities包2.安装EntitiesGraphics包3.安装URP渲染管线 Dots窗口 前言 DOTS(Data-Oriented Technology Stack)是Unity推出的一种用于开发高性能游戏和应用的数据导向技术栈,包含三大核心组件&am…

manus对比ChatGPT-Deep reaserch进行研究类学术相关数据分析!谁更胜一筹?

没有账号,只能挑选一个案例 一夜之间被这个用全英文介绍全华班出品的新爆款国产AI产品的小胖刷频。白天还没有切换语言的选项,晚上就加上了。简单看了看团队够成,使用很长实践的Monica创始人也在其中。逐渐可以理解,重心放在海外产…

Kubernetes中的 iptables 规则介绍

#作者:邓伟 文章目录 一、Kubernetes 网络模型概述二、iptables 基础知识三、Kubernetes 中的 iptables 应用四、查看和调试 iptables 规则五、总结 在 Kubernetes 集群中,iptables 是一个核心组件, 用于实现服务发现和网络策略。iptables 通…

视频图像刷新到HTTP的原理

上一篇博客已经说了cgi拿到了共享内存的程序还需要处理的才能够真正刷新到网页里面去 HTTP协议介绍 HTTP中文名称是超文本传输协议,它是一个简单的请求.响应协议,HTTP协议它运行在TCP上面,它是互联网数据通信的基础。 几乎所有的网页请求和互…

2024四川大学计算机考研复试上机真题

2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …

Qt 实现绘图板(支持橡皮擦与 Ctrl+Z 撤销功能)[特殊字符]

作业&#xff1a; 1&#xff1a;实现绘图的时候&#xff0c;颜色的随时调整 2&#xff1a;追加橡皮擦功能 3&#xff1a;配合键盘事件&#xff0c;实现功能 当键盘按 ctrlz的时候&#xff0c;撤销最后一次绘图 头文件.h #ifndef WIDGET_H #define WIDGET_H#include <QWidge…

计算机网络(1) 网络通信基础,协议介绍,通信框架

网络结构模式 C/S-----客户端和服务器 B/S -----浏览器服务器 MAC地址 每一个网卡都拥有独一无二的48位串行号&#xff0c;也即MAC地址&#xff0c;也叫做物理地址、硬件地址或者是局域网地址 MAC地址表示为12个16进制数 如00-16-EA-AE-3C-40 &#xff08;每一个数可以用四个…

【无人机三维路径规划】基于CPO冠豪猪优化算法的无人机三维路径规划Maltab

代码获取基于CPO冠豪猪优化算法的无人机三维路径规划Maltab 基于CPO冠豪猪优化算法的无人机三维路径规划 一、CPO算法的基本原理与核心优势 冠豪猪优化算法&#xff08;Crested Porcupine Optimizer, CPO&#xff09;是一种新型元启发式算法&#xff0c;其灵感来源于冠豪猪的…

简洁实用的3个免费wordpress主题

高端大气动态炫酷的免费企业官网wordpress主题 非常简洁的免费wordpress主题&#xff0c;安装简单、设置简单&#xff0c;几分钟就可以搭建好一个wordpress网站。 经典风格的免费wordpress主题 免费下载 https://www.fuyefa.com/wordpress

RabbitMQ 高级特性解析:RabbitMQ 消息可靠性保障 (上)

RabbitMQ 核心功能 RabbitMQ 高级特性解析&#xff1a;RabbitMQ 消息可靠性保障 &#xff08;上&#xff09;-CSDN博客 RabbitMQ 高级特性&#xff1a;从 TTL 到消息分发的全面解析 &#xff08;下&#xff09;-CSDN博客 前言 最近再看 RabbitMQ&#xff0c;看了看自己之前写…

用DeepSeek-R1-Distill-data-110k蒸馏中文数据集 微调Qwen2.5-7B-Instruct!

下载模型与数据 模型下载&#xff1a; huggingface&#xff1a; Qwen/Qwen2.5-7B-Instruct HF MirrorWe’re on a journey to advance and democratize artificial intelligence through open source and open science.https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct 魔搭&a…

在IDEA中进行git回滚操作:Reset current branch to here‌或Reset HEAD

问题描述 1&#xff09;在本地修改好的代码&#xff0c;commit到本地仓库&#xff0c;突然发觉有问题不想push推到远程仓库了&#xff0c;但它一直在push的列表中存在&#xff0c;那该怎么去掉push列表中的内容呢&#xff1f; 2&#xff09;合并别的分支到当前分支&#xff0…

六十天前端强化训练之第十一天之事件机制超详解析

欢迎来到编程星辰海的博客讲解 目录 一、事件模型演进史 1.1 原始事件模型&#xff08;DOM Level 0&#xff09; 1.2 DOM Level 2事件模型 1.3 DOM Level 3事件模型 二、事件流深度剖析 2.1 捕获与冒泡对比实验 2.2 事件终止方法对比 三、事件委托高级应用 3.1 动态元…

匿名GitHub链接使用教程(Anonymous GitHub)2025

Anonymous GitHub 1. 引言2. 准备3. 进入Anonymous GitHub官网4. 用GitHub登录匿名GitHub并授权5. 进入个人中心&#xff0c;然后点击• Anonymize Repo实例化6. 输入你的GitHub链接7. 填写匿名链接的基础信息8. 提交9. 实例化对应匿名GitHub链接10. 进入个人中心管理项目11. 查…

Git系列之git tag和ReleaseMilestone

以下是关于 Git Tag、Release 和 Milestone 的深度融合内容&#xff0c;并补充了关于 Git Tag 的所有命令、详细解释和指令实例&#xff0c;条理清晰&#xff0c;结合实际使用场景和案例。 1. Git Tag 1.1 定义 • Tag 是 Git 中用于标记特定提交&#xff08;commit&#xf…