Python的Matplotlib库应用(超详细教程)

目录

一、环境搭建

1.1 配置matplotlib库

1.2 配置seaborn库

1.3 配置Skimage库

二、二维图像

2.1 曲线(直线)可视化

2.2 曲线(虚线)可视化

2.3 直方图

2.4 阶梯图

三、三维图像

3.1 3D曲面图

3.2 3D散点图

3.3 3D散点图


        Matplotlib库是一款功能强大且灵活的Python数据可视化软件包,它支持跨平台运行,能够根据NumPy ndarray数组绘制高质量的2D图像(也支持部分3D图像)。Matplotlib提供了类MATLAB的绘图API,使得绘图过程简单直观,代码清晰易懂。它广泛应用于数据分析、科学研究、报告生成以及教育与培训等领域,用户可以通过它创建多样化的图表类型,如折线图、柱状图、散点图等,并对图表的各个元素进行高度定制化的调整。无论是简单的图表还是复杂的可视化需求,Matplotlib都能提供高质量的输出。

一、环境搭建

1.1 配置matplotlib库

pip install matplotlib

安装成功展示图: 

1.2 配置seaborn库

pip install seaborn

 安装成功展示图: 

1.3 配置Skimage库

pip install scikit-image

 安装成功展示图: 

二、二维图像

2.1 曲线(直线)可视化

import matplotlib.pyplot as plt
import numpy as npX = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 绘制线
plt.plot(X, Y, color='red')
plt.xlabel('X')
plt.ylabel('Y')
# 设置图像标题名
plt.title("y = sin(X)")
# 是否添加网格
plt.grid(True)
# 绘制图像
plt.show()

2.2 曲线(虚线)可视化

import matplotlib.pyplot as plt
import numpy as npX = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 绘制线 蓝色 虚线
plt.plot(X, Y, "b-.")
plt.xlabel(r"$\alpha$")
plt.ylabel(r"$\beta$")
# 设置图像标题名
plt.title("$y=\sum sin(x)$")
# 是否添加网格
plt.grid(True)
# 绘制图像
plt.show()

2.3 直方图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)X = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 生成数据
data = np.random.randn(200, 1)
# 可视化
plt.hist(data, 10)
plt.xlabel("取值")
plt.ylabel("频数")
plt.title("直方")
# 绘制图像
plt.show()

2.4 阶梯图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticksmatplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)X = np.linspace(1, 15)
Y = np.sin(X)
# 图像大小设置
plt.figure(figsize=(10,8))
# 阶梯图设置
plt.step(X, Y, c = "r", label = "sin(x)", linewidth = 3)
# 添加辅助线
plt.plot(X, Y, "o--", color = "grey", alpha = 0.5)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Bar")
# 设置图例位置及大小
plt.legend(loc = "lower right", fontsize = "small")
# 设置X轴坐标系取值
xtick = [0, 5, 10, 15]
xticklabels = [str(x) + "万" for x in xtick]
# x轴的坐标取值,倾斜度为45°
plt.xticks(xtick, xticklabels, rotation = 45)
# 调整水平空间距离
plt.subplots_adjust(hspace = 0.5)
plt.show()

三、三维图像

3.1 3D曲面图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)x = np.linspace(-4, 4, num = 50)
y = np.linspace(-4, 4, num = 50)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# 3D曲面图可视化
fig = plt.figure(figsize=(6, 5))
# 设置3D坐标
ax1 = fig.add_subplot(1, 1, 1, projection = '3d')
# 绘制曲面图, rstride:行的跨度 cstride:列的跨度 alpha:透明度 cmap:颜色
ax1.plot_surface(X, Y, Z, rstride = 1, cstride = 1, alpha = 0.5, cmap = plt.cm.coolwarm)
# 绘制z轴方向的等高线
cset = ax1.contourf(X, Y, Z, zdir = 'z', offset = 1, cmap = plt.cm.CMRmap)
ax1.set_xlabel("X")
ax1.set_xlim(-4, 4)
ax1.set_ylabel("Y")
ax1.set_ylim(-4, 4)
ax1.set_zlabel("Z")
ax1.set_zlim(-1, 1)
ax1.set_title("曲面图和等高线")
plt.show()

 

3.2 3D散点图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
x = np.cos(theta)
y = np.sin(theta)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
# 在子图中绘制三维图像
fig = plt.figure(figsize=(10, 10))
# 将坐标系设置为3D坐标系
ax1 = fig.add_subplot(1, 1, 1, projection='3d')
ax1.plot(x, y, z, "b-")
ax1.view_init(elev = 20, azim = 25)
ax1.set_title("3D曲线图")
plt.show()

 

3.3 3D散点图

import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from matplotlib.pyplot import xticks
from pyparsing import alphas
matplotlib.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns.set(font = "Kaiti", style = "ticks", font_scale = 1.4)theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
x = np.cos(theta)
y = np.sin(theta)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
# 在子图中绘制三维图像
fig = plt.figure(figsize=(10, 10))
# 将坐标系设置为3D坐标系
ax1 = plt.subplot(1, 1, 1, projection='3d')
ax1.scatter3D(x, y, z, c = "r", s = 20)
ax1.view_init(elev = 20, azim = 25)
ax1.set_title("3D散点图")
plt.show()

上一篇文章:Python的pandas库基础知识(超详细教学)-CSDN博客https://blog.csdn.net/Z0412_J0103/article/details/144849671https://blog.csdn.net/Z0412_J0103/article/details/144849671icon-default.png?t=O83Ahttps://blog.csdn.net/Z0412_J0103/article/details/144849671下一篇文章:Python实现简单的缺失值处理(超详细教程)-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Z0412_J0103/article/details/144956087

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/66540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个个顺序挨着来 - 责任链模式(Chain of Responsibility Pattern)

责任链模式(Chain of Responsibility Pattern) 责任链模式(Chain of Responsibility Pattern)责任链模式(Chain of Responsibility Pattern)概述责任链结构图责任链模式概述责任链模式涉及的角色 talk is c…

Laravel 新 WebSocket 服务 Reverb 使用指南

旧篇 > Laravel/Lumen 中使用 Echo Socket.IO-Client 实现网页即时通讯广播 https://blog.csdn.net/maxsky/article/details/130394420 已过时 与时俱进,Laravel 官方在 2024 年 7 月发布了 laravel/reverb 包的正式版,因为之前使用的 laravel-echo-…

WEB攻防-通用漏洞_文件上传_黑白盒审计流程

目录 前置知识点 Finecms-CMS文件上传 ​编辑 Cuppa-Cms文件上传 Metinfo-CMS 文件上传 前置知识点 思路: 黑盒就是寻找一切存在文件上传的功能应用 1 、个人用户中心是否存在文件上传功能 2 、后台管理系统是否存在文件上传功能 3 、字典目录扫描探针文件上传构…

Agentic RAG 解释

RAG(检索增强生成)通过提供来自外部知识源的相关背景来帮助提高 LLM 答案的准确性和可靠性。 Agentic RAG 是高级 RAG 版本,它使用 AI 代理来更加自主地行动。 Agentic RAG 执行以下操作 查询理解、分解和重写检索策略选择知识库管理结果综…

apex安装

安装过程复杂曲折,网上说的很多办法,貌似成功了,实际还是没起作用。 先说成功过程,执行下面命令,安装成功(当然,前提是你要先配置好编译环境): (我的环境&a…

基于FPGA的出租车里程时间计费器

基于FPGA的出租车里程时间计费器 功能描述一、系统框图二、verilog代码里程增加模块时间增加模块计算价格模块上板视频演示 总结 功能描述 (1);里程计费功能:3公里以内起步价8元,超过3公里后每公里2元,其中…

jdk8升级JDK21(Springboot2.7.18升级Springboot3.4.0)

目录 背景: 一、maven升级 二、代码改造 2.1 javax替换为jakarta 2.2 swagger2升级swagger3相关更新 2.2.1 新增SpringDocConfig配置类 2.2.2 全局代码更新 2.2.3 全局代码替换(普通正则替换) 2.3 Mybatis Plus升级 2.4 logback.xm…

AI赋能跨境电商:魔珐科技3D数字人破解出海痛点

跨境出海进入狂飙时代,AI应用正在深度渗透并重塑着跨境电商产业链的每一个环节,迎来了发展的高光时刻。生成式AI时代的大幕拉开,AI工具快速迭代,为跨境电商行业的突破与飞跃带来了无限可能性。 由于跨境电商业务自身特性鲜明&…

【HarmonyOS NEXT】鸿蒙应用实现屏幕录制详解和源码

【HarmonyOS NEXT】鸿蒙应用实现屏幕录制详解和源码 一、前言 官方文档关于屏幕录制的API和示例介绍获取简单和突兀。使用起来会让上手程度变高。所以特意开篇文章,讲解屏幕录制的使用。官方文档参见:使用AVScreenCaptureRecorder录屏写文件(ArkTS) 二…

Android - NDK:编译可执行程序在android设备上运行

在android开发中,调试时会把C代码直接编译成可执行程序,运行在android设备上以确认其功能是否正常。 1、基于NDK编译可执行文件 2、push到 /data/local/tmp目录下 3、设置权限,执行。 ndk工程中build.gradle设置 groovy plugins {id com.a…

用matlab调用realterm一次性发送16进制数

realterm采用PutString接口进行发送,需要注意的是发送的16进制数前面要加入0x标志。只有这样,realterm才能将输入的字符串识别为16进制数的形式。 另外,PutString函数支持两个参数输入,第一个参数为字符串,第二个参数为发送形式&…

Python3刷算法来呀,贪心系列题单

1.7号题单 1、​​​​​​k次取反后最大值 2、柠檬水找零 3、分发糖果 示例 1: 输入:ratings [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。示例 2: 输入:ratings…

el-table拖拽表格

1、拖拽插件安装 npm i -S vuedraggable // vuedraggable依赖Sortable.js,我们可以直接引入Sortable使用Sortable的特性。 // vuedraggable是Sortable的一种加强,实现组件化的思想,可以结合Vue,使用起来更方便。 2、引入拖拽函数…

Unity学习笔记(七)使用状态机重构角色攻击

前言 本文为Udemy课程The Ultimate Guide to Creating an RPG Game in Unity学习笔记 攻击状态重构 首先我们重构攻击状态的动画 之前的动画,我们是使用状态(isAttacking)攻击次数(comboCounter)完成动画的过渡,这样虽然能完成功能,但是如…

Windows10环境下安装RabbitMq折腾记

最近有个老项目需要迁移到windows10环境,用的是比较老的rabbitmq安装包,如下所示。经过一番折腾,死活服务起不来,最终果断放弃老版本启用新版本。现在把折腾过程记录下: 一、安装erlang 安装完成后的目录结构&#xff…

了解RabbitMQ中的Exchange:深入解析与实践应用

在分布式系统设计中,消息队列(Message Queue)扮演着至关重要的角色,而RabbitMQ作为开源消息代理软件的佼佼者,以其高性能、高可用性和丰富的功能特性,成为了众多开发者的首选。在RabbitMQ的核心组件中&…

分布式主键ID生成方式-snowflake雪花算法

这里写自定义目录标题 一、业务场景二、技术选型1、UUID方案2、Leaf方案-美团(基于数据库自增id)3、Snowflake雪花算法方案 总结 一、业务场景 大量的业务数据需要保存到数据库中,原来的单库单表的方式扛不住大数据量、高并发,需…

Linux 系统搭建网络传输环境汇总

Ubuntu 系统搭建 TFTP 服务器 1. 创建 /home/username/workspace/tftp 目录并赋予最大权限,username 是自己用户名 sudo mkdir -p /home/username/workspace/tftp sudo chmod 777 /home/username/workspace/tftp 2. 安装 tftp-hpa( 客户端软件包&#x…

“AI智慧语言训练系统:让语言学习变得更简单有趣

大家好,我是你们的老朋友,一个热衷于探讨科技与教育结合的产品经理。今天,我想和大家聊聊一个让语言学习变得不再头疼的话题——AI智慧语言训练系统。这个系统可是我们语言学习者的福音,让我们一起来揭开它的神秘面纱吧&#xff0…

线性代数考研笔记

行列式 背景 分子行列式:求哪个未知数,就把b1,b2放在对应的位置 分母行列式:系数对应写即可 全排列与逆序数 1 3 2:逆序数为1 奇排列 1 2 3:逆序数为0 偶排列 将 1 3 2 只需将3 2交换1次就可以还原原…