R语言6种将字符转成数字的方法,写在新年来临之际

咱们临床研究中,拿到数据后首先要对数据进行清洗,把数据变成咱们想要的格式,才能进行下一步分析,其中数据中的字符转成数字是个重要的内容,因为字符中常含有特殊符号,不利于分析,转成数字后才能更好进行分析。
今天来总结一下常见的几种字符转数字的方法,建议收藏,以后需要用时找得到。咱们先生成一个数据,来示例一下。

library(tidyr)# 创建原始宽格式的数据框
data <- data.frame(id = c(1:8),group = c(0, 0, 0, 0, 1, 1, 1, 1),w0 = c(0.35, 0.77, 0.48, 0.63, 0.45, 0.56, 1.08, 0.55),w1 = c(1.01, 1.32, 1.18, 1.42, 0.59, 0.86, 1.44, 1.20),w2 = c(1.47, 1.60, 1.65, 1.88, 0.64, 1.37, 1.93, 1.68),w4 = c(2.46, 2.54, 2.86, 3.13, 0.99, 2.04, 2.63, 2.87)
)# 将数据框从宽格式转换为长格式
df_long <- data %>%pivot_longer(cols = c('w0', 'w1', 'w2', 'w4'), # 需要转换的列名names_to = "time",                # 新生成的列名,用来存储原列名values_to = "value"               # 新生成的列名,用来存储原数值)

在这里插入图片描述
好的,数据生成了,我们看到到time这一列的变量是w0,w1,w2,w4的字符变量,咱们想要把它转成数字0,1,2,4,应该怎么转换呢?最常见的时候是想起ifelse()函数来一个个的转换,但是这样效率太低了,介绍几种快速转换的。

  1. dplyr包
library(dplyr)
df_long2 <- df_long %>%mutate(time = case_when(time == "w0" ~ 0,time == "w1" ~ 1,time == "w2" ~ 2,time == "w4" ~ 4,TRUE ~ as.numeric(time) # 这一行确保如果未来有其他值,它们不会变成NA))

在这里插入图片描述
这样就轻松转换好了。

  1. 也是继续使用dplyr包recode()函数,咱们注意一下,这两个函数的判断方法有点不一样。等号前面不能有空格。
library(dplyr)
df_long3 <- df_long %>%mutate(time = recode(time, w0 =0, w1 =1, w2 =2, w4 =4))

在这里插入图片描述
3. 使用基础R中的 factor() 和 as.numeric(),这个的好处是不用在额外使用R包,但是你必须一个个的指定。也要对基础语法比较掌握。

df_long3$time2 <- as.numeric(as.character(factor(df_long$time, levels = c("w0", "w1", "w2", "w4"),labels = c(0, 1, 2, 4))))

在这里插入图片描述

  1. stringr包来对数字提取,因为咱们是字符后面的数字部分,所以可以用这样的方法,并不适合所有情况。
library(stringr)
df_long4 <- df_long %>%mutate(time = as.numeric(str_extract(time, "\\d+")))

在这里插入图片描述

  1. 使用dplyr包的if_else函数,注意一下这个和基础的ifelse()函数是不一样的
df_long5<- df_long %>%mutate(time = if_else(time == "w0", 0,if_else(time == "w1", 1,if_else(time == "w2", 2,if_else(time == "w4", 4, NA_real_)))))

在这里插入图片描述
6. 因为它是位置索引,所以索引回来的是位置,因此有个小缺点,4变成了3,不能完全满意。为什么我还要说呢,使用 match() 函数,这个函数主要是用来索引字符匹配的。明白它的用法在很多地方都能有很大的用途。

df_long6 <- df_long %>%mutate(time = match(time, c("w0", "w1", "w2", "w4")) - 1) # 因为索引从1开始,所以减去1

在这里插入图片描述

写在新年来临之际,公众号4年来有无数的铁粉默默支持,给我提了很多好的意见,受益良多,在此默默感谢。
新的一年公众号会将对纵向分析进行一些介绍,包括混合效应模型、gee模型、gamm模型等。也会继续复现一些关于charls的纵向分析文章。
感谢大家对我的scitable包的支持,有些粉丝还不明白它能做什么,最基础的功能就是:基线表、单因素和多因素分析,多模型分析,阈值效应分析,亚组分析,rcs分析。还可以进行数据挖掘和交互效应深层次数据挖掘。
目前还有很多功能待写,比如一键相加交互模型函数、gamm模型函数、gam模型的阈值函数、gee模型的曲线拟合和阈值函数,新版的亚组森林图,相信不会让你们失望的。

最后祝各位粉丝新年快乐,合家美满,连发连中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/65932.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈如何学习编程技术

编程&#xff0c;即 编写程序使计算机完成指定的任务。 计算机底层只能识别0和1&#xff0c;但是编程相关的技术栈纷繁复杂&#xff0c;变化多端&#xff0c;无穷无尽。比如 编程语言就分很多种。完成某种特定功能的中间件技术更多。在有限的时间里 如何学习无限的技术&#x…

《一文读懂PyTorch核心模块:开启深度学习之旅》

《一文读懂PyTorch核心模块:开启深度学习之旅》 一、PyTorch 入门:深度学习的得力助手二、核心模块概览:构建深度学习大厦的基石三、torch:基础功能担当(一)张量操作:多维数组的神奇变换(二)自动微分:梯度求解的幕后英雄(三)设备管理:CPU 与 GPU 的高效调度四、to…

华为消费级QLC SSD来了

近日&#xff0c;有关消息显示&#xff0c;华为的消费级SSD产品线&#xff0c;eKitStor Xtreme 200E系列&#xff0c;在韩国一家在线零售商处首次公开销售&#xff0c;引起了业界的广泛关注。 尽管华为已经涉足服务器级别的SSD制造多年&#xff0c;但直到今年6月才正式推出面向…

【生活】冬天如何选口罩(医用口罩,N95, KN95还是KP95?带不带呼吸阀门?带不带活性炭?)

&#x1f4a1;总结一下就是&#xff1a; 日常防护的话&#xff0c;医用口罩就可以啦。要是想长时间佩戴N95&#xff08;KN95&#xff09;口罩的话也可以. 在高风险环境&#xff08;像医院、疫情防控期间&#xff09;&#xff0c;一定要选不带呼吸阀门的N95口罩KN95&#xff09…

Javascript算法——回溯算法(组合问题)

相关资料来自《代码随想录》&#xff0c;版权归原作者所有&#xff0c;只是学习记录 回溯 回溯模板 void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择&#xff1a;本层集合中元素&#xff08;树中节点孩子的数量就是集合的大小&#xff09;) {处理节点…

计算机创造的奇迹——C语言

一.简介 C语言是一种较早的程序设计语言&#xff0c;诞生于1972年的贝尔实验室。1972 年&#xff0c;Dennis Ritchie 设计了C语言&#xff0c;它继承了B语言的许多思想&#xff0c;并加入了数据类型的概念及其他特性。 尽管C 语言是与 UNIX 操作系统一起被开发出来的&#xff…

【门铃工作原理】2021-12-25

缘由关于#门铃工作原理#的问题&#xff0c;如何解决&#xff1f;-嵌入式-CSDN问答 4 RST&#xff08;复位&#xff09;当此引脚接高电平时定时器工作&#xff0c;当此引脚接地时芯片复位&#xff0c;输出低电平。 按钮按下给电容器充电并相当与短路了R1改变了频率&#xff0c;按…

2025年,测试技能支棱起来。

你是否曾为提升自己的测试技能而烦恼&#xff1f;在这个日新月异的技术时代&#xff0c;2025年已经悄然而至&#xff0c;软件测试行业的需求和挑战也在不断变化。那么&#xff0c;如何在这个竞争激烈的环境中脱颖而出&#xff0c;成为一名更加优秀的测试工程师呢&#xff1f; …

在线机考|2024华为实习秋招春招编程题(最新)——第1题_拔河比赛队员选拔_100分(八)

题目内容 某团队近期需要组织一支队伍参加拔河比赛&#xff0c;团队共有队员n人&#xff0c;比赛队员人数要求为m人&#xff0c;n>m&#xff0c;n个队员按编号&#xff0c;1到n的顺序参加k轮力量测试&#xff0c;每轮的测试成绩用正整数表示。 根据n个队员的力量测试成绩选择…

【AI创作】kimi API初体验

一、介绍 接口文档 https://platform.moonshot.cn/docs/guide/migrating-from-openai-to-kimi 收费详情 并发: 同一时间内我们最多处理的来自您的请求数RPM: request per minute 指一分钟内您最多向我们发起的请求数TPM: token per minute 指一分钟内您最多和我们交互的toke…

LLM2Vec: 解锁大语言模型的隐藏能力

LLM2Vec&#xff1a;重新定义大语言模型在自然语言处理中的应用 一种名为 ** LLM2Vec ** 的新方法正在改变我们对大语言模型&#xff08;LLMs&#xff09;在自然语言处理&#xff08;NLP&#xff09;中的使用方式。 研究人员提出了一种创新方法&#xff0c;将通常仅用于生成文…

人工智能安全与隐私——联邦遗忘学习(Federated Unlearning)

前言 在联邦学习&#xff08;Federated Learning, FL&#xff09;中&#xff0c;尽管用户不需要共享数据&#xff0c;但全局模型本身可以隐式地记住用户的本地数据。因此&#xff0c;有必要将目标用户的数据从FL的全局模型中有效去除&#xff0c;以降低隐私泄露的风险&#xf…

Linux(Ubuntu)下ESP-IDF下载与安装完整流程(4)

接前一篇文章:Linux(Ubuntu)下ESP-IDF下载与安装完整流程(3) 本文主要看参考官网说明,如下: 快速入门 - ESP32-S3 - — ESP-IDF 编程指南 latest 文档 Linux 和 macOS 平台工具链的标准设置 - ESP32-S3 - — ESP-IDF 编程指南 latest 文档 前边几回讲解了第一步 —— …

GAN对抗生成网络(一)——基本原理及数学推导

1 背景 GAN(Generative Adversarial Networks)对抗生成网络是一个很巧妙的模型&#xff0c;它可以用于文字、图像或视频的生成。 例如&#xff0c;以下就是GAN所生成的人脸图像。 2 算法思想 假如你是《古董局中局》的文物造假者&#xff08;Generator,生成器&#xff09;&a…

求职:求职者在现场面试中应该注意哪些问题?

求职者在现场面试中需要注意诸多方面的问题 面试前的准备 了解公司信息&#xff1a; 提前通过公司官网、社交媒体账号、新闻报道等渠道&#xff0c;熟悉公司的发展历程、业务范围、企业文化、主要产品或服务等内容。例如&#xff0c;如果是应聘一家互联网科技公司&#xff0c…

数字图像总复习

目录 一、第一章 二、第三章 三、第四章 四、第五章 五、第八章 六、第十章 作业一 作业二 一、第一章 1.图像文件格式由&#xff08;文件头&#xff09;及&#xff08;图像数据&#xff09;组成 2.常见的图像文件格式&#xff1a;&#xff08;JPEG&#xff09;、&…

使用Fn Connect之后,如何访问到其他程序页面?原来一直都可以!

前言 昨天小白讲过在飞牛上登录Fn Connect&#xff0c;就可以实现远程访问家里的NAS。 接着就有小伙伴咨询&#xff1a;如何远程访问到家里其他需要使用不同端口号才能访问到的软件&#xff0c;比如Jellyfin、Emby等。 这个小白在写文章的时候确实没有考虑到&#xff0c;因为…

(二)当人工智能是一个函数,函数形式怎么选择?ChatGPT的函数又是什么?

在上一篇文章中&#xff0c;我们通过二次函数的例子&#xff0c;讲解了如何训练人工智能。今天&#xff0c;让我们进一步探讨&#xff1a;面对不同的实际问题&#xff0c;应该如何选择合适的函数形式&#xff1f; 一、广告推荐系统中的函数选择 1. 业务目标 想象一下&#x…

Redis 中 Lua 脚本的使用详解

Redis 中 Lua 脚本的使用详解 在 Redis 中,Lua 脚本是一种强大的工具,用于执行复杂的操作并减少网络延迟。Lua 脚本通过 EVAL 命令执行,能够在 Redis 服务器端运行多步操作,从而确保操作的原子性,并提升性能。 1. Lua 脚本的作用 原子性:在 Redis 中,Lua 脚本执行是原子…

利用3DGS中convert.py处理自采数据

前言 3DGS源码中convert.py提供对自采数据集的处理&#xff0c;需要预先安装Colmap和ImageMagick. ubuntu22.04安装colmap 点击进入NVIDIA官网&#xff0c;查看GPU的CMAKE_CUDA_ARCHITECTURES 1、克隆colmap源码&#xff0c;并进入colmap文件夹 git clone https://github.c…