【AI创作】kimi API初体验

一、介绍

接口文档

https://platform.moonshot.cn/docs/guide/migrating-from-openai-to-kimi

收费详情

在这里插入图片描述

  • 并发: 同一时间内我们最多处理的来自您的请求数
  • RPM: request per minute 指一分钟内您最多向我们发起的请求数
  • TPM: token per minute 指一分钟内您最多和我们交互的token数
  • TPD: token per day 指一天内您最多和我们交互的token数

二、环境准备

获取API Key

访问kimi开发者API
https://platform.moonshot.cn/console/info
找到API Key管理,点击新建:
在这里插入图片描述

三、兼容OpenAI方式开发

在这里插入图片描述

四、代码

from openai import OpenAIclient = OpenAI(api_key = "$MOONSHOT_API_KEY",base_url = "https://api.moonshot.cn/v1",
)completion = client.chat.completions.create(model = "moonshot-v1-8k",messages = [{"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},{"role": "user", "content": "你好,我叫李雷,1+1等于多少?"}],temperature = 0.3,
)print(completion.choices[0].message.content)

在这里插入图片描述
使用恰当长度的模型进行返回。model=moonshot-v1-auto 来让 Kimi 自动选择一个适配当前上下文长度的模型:

import os
import httpx
from openai import OpenAIclient = OpenAI(api_key=os.environ['MOONSHOT_API_KEY'],base_url="https://api.moonshot.cn/v1",
)def estimate_token_count(input_messages) -> int:"""在这里实现你的 Tokens 计算逻辑,或是直接调用我们的 Tokens 计算接口计算 Tokenshttps://api.moonshot.cn/v1/tokenizers/estimate-token-count"""header = {"Authorization": f"Bearer {os.environ['MOONSHOT_API_KEY']}",}data = {"model": "moonshot-v1-128k","messages": input_messages,}r = httpx.post("https://api.moonshot.cn/v1/tokenizers/estimate-token-count", headers=header, json=data)r.raise_for_status()return r.json()["data"]["total_tokens"]def select_model(input_messages, max_tokens=1024) -> str:"""select_model 根据输入的上下文消息 input_messages,以及预期的 max_tokens 值,选择一个大小合适的模型。select_model 内部会调用 estimate_token_count 函数计算 input_messages 所占用的 tokens 数量,加上 max_tokens 的值作为 total_tokens,并根据 total_tokens所处的区间选择恰当的模型。"""prompt_tokens = estimate_token_count(input_messages)total_tokens = prompt_tokens + max_tokensif total_tokens <= 8 * 1024:return "moonshot-v1-8k"elif total_tokens <= 32 * 1024:return "moonshot-v1-32k"elif total_tokens <= 128 * 1024:return "moonshot-v1-128k"else:raise Exception("too many tokens 😢")messages = [{"role": "system", "content": "你是 Kimi"},{"role": "user", "content": "你好,请给我讲一个童话故事。"},
]max_tokens = 2048
model = select_model(messages, max_tokens)completion = client.chat.completions.create(model=model,messages=messages,max_tokens=max_tokens,temperature=0.3,
)print("model:", model)
print("max_tokens:", max_tokens)
print("completion:", completion.choices[0].message.content)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/65922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLM2Vec: 解锁大语言模型的隐藏能力

LLM2Vec&#xff1a;重新定义大语言模型在自然语言处理中的应用 一种名为 ** LLM2Vec ** 的新方法正在改变我们对大语言模型&#xff08;LLMs&#xff09;在自然语言处理&#xff08;NLP&#xff09;中的使用方式。 研究人员提出了一种创新方法&#xff0c;将通常仅用于生成文…

人工智能安全与隐私——联邦遗忘学习(Federated Unlearning)

前言 在联邦学习&#xff08;Federated Learning, FL&#xff09;中&#xff0c;尽管用户不需要共享数据&#xff0c;但全局模型本身可以隐式地记住用户的本地数据。因此&#xff0c;有必要将目标用户的数据从FL的全局模型中有效去除&#xff0c;以降低隐私泄露的风险&#xf…

GAN对抗生成网络(一)——基本原理及数学推导

1 背景 GAN(Generative Adversarial Networks)对抗生成网络是一个很巧妙的模型&#xff0c;它可以用于文字、图像或视频的生成。 例如&#xff0c;以下就是GAN所生成的人脸图像。 2 算法思想 假如你是《古董局中局》的文物造假者&#xff08;Generator,生成器&#xff09;&a…

数字图像总复习

目录 一、第一章 二、第三章 三、第四章 四、第五章 五、第八章 六、第十章 作业一 作业二 一、第一章 1.图像文件格式由&#xff08;文件头&#xff09;及&#xff08;图像数据&#xff09;组成 2.常见的图像文件格式&#xff1a;&#xff08;JPEG&#xff09;、&…

使用Fn Connect之后,如何访问到其他程序页面?原来一直都可以!

前言 昨天小白讲过在飞牛上登录Fn Connect&#xff0c;就可以实现远程访问家里的NAS。 接着就有小伙伴咨询&#xff1a;如何远程访问到家里其他需要使用不同端口号才能访问到的软件&#xff0c;比如Jellyfin、Emby等。 这个小白在写文章的时候确实没有考虑到&#xff0c;因为…

(二)当人工智能是一个函数,函数形式怎么选择?ChatGPT的函数又是什么?

在上一篇文章中&#xff0c;我们通过二次函数的例子&#xff0c;讲解了如何训练人工智能。今天&#xff0c;让我们进一步探讨&#xff1a;面对不同的实际问题&#xff0c;应该如何选择合适的函数形式&#xff1f; 一、广告推荐系统中的函数选择 1. 业务目标 想象一下&#x…

利用3DGS中convert.py处理自采数据

前言 3DGS源码中convert.py提供对自采数据集的处理&#xff0c;需要预先安装Colmap和ImageMagick. ubuntu22.04安装colmap 点击进入NVIDIA官网&#xff0c;查看GPU的CMAKE_CUDA_ARCHITECTURES 1、克隆colmap源码&#xff0c;并进入colmap文件夹 git clone https://github.c…

硬件设计-关于ADS54J60的校准问题

目录 简介: 校准模分析: 交错的优势 交错挑战 S/2 fIN处产生杂散。失调不匹配杂散很容易识别,因为只有它位于fS/2处,并可轻松地进行补偿。增益、时序和带宽不匹配都会在输出频谱的fS/2 fIN 处产生杂散;因此,随之而来的问题是:如何确定它们各自的影响。图8以简单的…

什么是神经网络?神经网络的基本组成部分训练神经网络激活函数有哪些局限性和挑战

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c; 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把…

感恩相伴,蓝凌向新成长!一起拥抱数智2025

2024&#xff0c;数字中国&#xff0c;向新奔跑&#xff01;千行百业拥抱数字化、人工智能&#xff0c;蓝凌继续践行“让组织更智慧”的使命&#xff0c;与客户、伙伴等共创共赢&#xff0c;引领中国数智化办公创新发展。感恩相伴24载&#xff0c;让我们一起拥抱数智2025&#…

【算法】模拟退火算法学习记录

写这篇博客的原因是博主本人在看某篇文章的时候&#xff0c;发现自己只是知道SGD这个东西&#xff0c;但是到底是个啥不清楚&#xff0c;所以百度了一下&#xff0c;然后在通过博客学习的时候看到了退火两个字&#xff0c;想到了本科做数模比赛的时候涉猎过&#xff0c;就上bil…

【0x0037】HCI_Write_Link_Supervision_Timeout命令详解

目录 一、命令概述 二、命令格式及参数说明 2.1. HCI_Write_Link_Supervision_Timeout 命令格式 2.2. Handle 2.3. Link_Supervision_Timeout 三、生成事件及参数 3.1. HCI_Command_Complete 事件 3.2. Status 3.3. Handle 四、命令执行流程 4.1. 命令准备阶段 4.…

【杂谈】-DeepSeek如何以560万美元突破成本障碍

DeepSeek如何以560万美元突破成本障碍 文章目录 DeepSeek如何以560万美元突破成本障碍1、高效人工智能的经济学2、实现不可能的工程3、人工智能生态系统的连锁反应 传统的人工智能观点认为&#xff0c;构建大型语言模型 (LLM)需要大量资金——通常需要数十亿美元的投资。但中国…

TIOBE 指数 12 月排行榜公布,VB.Net排行第九

IT之家 12 月 10 日消息&#xff0c;TIOBE 编程社区指数是一个衡量编程语言受欢迎程度的指标&#xff0c;评判的依据来自世界范围内的工程师、课程、供应商及搜索引擎&#xff0c;今天 TIOBE 官网公布了 2024 年 12 月的编程语言排行榜&#xff0c;IT之家整理如下&#xff1a; …

vs2022编译opencv 4.10.0

参考&#xff1a;Windosw下Visual Studio2022编译OpenCV与参考区别在于&#xff0c;没有用cmake GUI&#xff0c;也没有创建build目录&#xff0c;直接用vs2022打开了C:\code\opencv目录&#xff0c;即CMakeLists.txt所在根目录。没有修改默认下载地址&#xff0c;采用手动下载…

未来教育:AI知识库如何重塑学习体验

在科技日新月异的今天&#xff0c;教育领域正经历着前所未有的变革。人工智能&#xff08;AI&#xff09;技术的快速发展&#xff0c;特别是AI知识库的广泛应用&#xff0c;正在重塑我们的学习体验&#xff0c;使之变得更加高效、个性化和智能化。本文将深入探讨AI知识库如何影…

Android Camera压力测试工具

背景描述&#xff1a; 随着系统的复杂化和业务的积累&#xff0c;日常的功能性测试已不足以满足我们对Android Camera相机系统的测试需求。为了确保Android Camera系统在高负载和多任务情况下的稳定性和性能优化&#xff0c;需要对Android Camera应用进行全面的压测。 对于压…

JDK8源码分析Jdk动态代理底层原理

本文侧重分析JDK8中jdk动态代理的源码&#xff0c;若是想看JDK17源码分析可以看我的这一篇文章 JDK17源码分析Jdk动态代理底层原理-CSDN博客 两者之间有着略微的差别&#xff0c;JDK17在JDK8上改进了不少 目录 源码分析 过程 生成的代理类大致结构 本文侧重分析JDK8中jdk…

Spire.PDF for .NET【页面设置】演示:向 PDF 添加平铺背景图像

平铺背景通常是指用一个或多个小图像重复填充的背景。在本文中&#xff0c;您将学习如何在 PDF 中平铺图像&#xff0c;并使用 C# 和 VB.NET 为您的 PDF 创建平铺背景。 Spire.PDF for .NET 是一款独立 PDF 控件&#xff0c;用于 .NET 程序中创建、编辑和操作 PDF 文档。使用 …

ImageNet 2.0?自动驾驶数据集迎来自动标注新时代

引言&#xff1a; 3DGS因其渲染速度快和高质量的新视角合成而备受关注。一些研究人员尝试将3DGS应用于驾驶场景的重建。然而&#xff0c;这些方法通常依赖于多种数据类型&#xff0c;如深度图、3D框和移动物体的轨迹。此外&#xff0c;合成图像缺乏标注也限制了其在下游任务中的…