生成模型的两大代表:VAE和GAN

生成模型

给定数据集,希望生成模型产生与训练集同分布的新样本。对于训练数据服从\(p_{data}(x)\);对于产生样本服从\(p_{model}(x)\)。希望学到一个模型\(p_{model}(x)\)与\(p_{data}(x)\)尽可能接近。

这也是无监督学习中的一个核心问题——密度估计问题。有两种典型的思路:

  1. 显式的密度估计:显式得定义并求解分布\(p_{model}(x)\),如VAE。
  2. 隐式的密度估计:学习一个模型\(p_{model}(x)\),而无需显式定义它,如GAN。

VAE

AE

首先介绍下自编码器(Auto Encoder, AE),它将输入的图像X通过编码器encoder编码为一个隐向量(bottleneck)Z,然后再通过解码器decoder解码为重构图像X’,它将自己编码压缩再还原故称自编码。结构如下图所示:

在这里插入图片描述

以手写数字数据集MNIST为例,输入图像大小为28x28,通道数为1,定义隐向量的维度(latent_dim)为1 x N,N=20。经过编码器编码为一个长度为20的向量,再通过解码器解码为28x28大小的图像。将生成图像X’与原始图像X进行对比,计算重构误差,通过最小化误差优化模型参数:

\[Loss = distance(X, X’) \]

一般distance距离函数选择均方误差(Mean Square Error, MSE)。AE与PCA作用相同,通过压缩数据实现降维,还能把降维后的数据进行重构生成图像,但PCA的通过计算特征值实现线性变换,而AE则是非线性。

VAE

如果中间的隐向量的每一分量取值不是直接来自Encoder,而是在一个分布上进行采样,那么就是变分自编码器(Variational Auto Encoder,VAE),结构如下图所示:

在这里插入图片描述

还是上面的例子,这里的Z维度还是1 x 20,但是每一分量不是直接来自Encoder,而是在一个分布上进行采样计算,一般来说分布选择正态分布(当然也可以是其他分布)。每个正态分布的\(\mu\)与\(\sigma\)由Encoder的神经网络计算而来。关于Z上每一分量的计算,这里,\(\epsilon\)从噪声分布中随机采样得到。

\[z{(i,l)}=\mu{(i)}+\sigma{(i)}\cdot\epsilon{(l)}\space\mathrm{and}\space\epsilon^{(l)}\sim N(0,I) \]

在Encoder的过程中给定x得到z就是计算后验概率\(q_\phi(z|x)\),学习得到的z为先验分布\(p_\theta(z)\),Decoder部分根据z计算x的过程就是似然估计\(p_\theta(x|z)\),训练的目的也是最大化似然估计(给出了z尽可能得还原为x)。

边缘似然度\(p_\theta(x)=\int p_\theta(z)p_\theta(x|z)\,{\rm d}z\),边缘似然度又是每个数据点的边缘似然之和组成:\(\log p_\theta(x{(1)},\cdots,x{(N)})=\sum_{i=1}^N\log p_\theta(x^{(i)})\),可以被重写为:

\[\log p_\theta(x^{(i)})={\rm D_{KL}}(q_\phi(z|x{(i)})||p_\theta(z|x{(i)}))+{\cal L}(\theta,\phi;x^{(i)}) \]

\(p_\theta(z|x^{(i)})\)通常被假设为标准正态分布,等式右边第二项称为边缘似然估计的下界,可以写为:

\[\log p_\theta(x^{(i)})\ge{\cal L}(\theta,\phi;x^{(i)})=\mathbb{E}_{z\sim q_\phi(z|x)}[-\log q_\phi(z|x)+\log p_\theta(x|z)] \]

得到损失函数:

\[{\cal L}(\theta,\phi;x^{(i)})=-{\rm D_{KL}}(q_\phi(z|x^{(i)})||p_\theta(z))+\mathbb{E}_{z\sim q_\phi(z|x^{(i)})}[\log p_\theta(x^{(i)}|z)] \]

GAN

生成对抗网络(Generative Adversarial Nets, GAN)需要同时训练两个模型:生成器(Generator, G)和判别器(Discriminator, D)。生成器的目标是生成与训练集同分布的样本,而判别器的目标是区分生成器生成的样本和训练集中的样本,两者相互博弈最后达到平衡(纳什均衡),生成器能够以假乱真,判别器无法区分真假。

在这里插入图片描述

生成器和判别器最简单的应用就是分别设置为两个MLP。为了让生成器在数据x学习分布\(p_g\),定义一个噪声分布\(p_z(z)\),然后使用生成器\(G(z;\theta_g)\)将噪声映射为生成数据x’(\(\theta_g\)是生成器模型参数)。同样定义判别器\(D(x;\theta_d)\),输出为标量表示概率,代表输入的x来自数据还是\(p_g\)。训练D时,以最大化分类训练样例还是G生成样本的概率准确性为目的;同时训练G以最小化\(\log(1-D(G(z)))\)为目的,两者互为博弈的双方,定义它们的最大最小博弈的价值函数\(V(G,D)\):

\[\min_G\max_DV(D,G)=\mathbb{E}_{x\sim p_{data}}[\log D(x)]+\mathbb{E}_{z\sim p_{z}}[\log(1-D(G(z)))] \]

可以得到生成器损失函数:\(\mathcal{L}_G =\frac1m\sum_{i=1}m\log\left(1-D\left(G\left(z{(i)}\right)\right)\right)\)

判别器损失函数:\(\mathcal{L}_D=\frac1m\sum_{i=1}^m\left[\log D\left(\boldsymbol{x}{(i)}\right)+\log\left(1-D\left(G\left(\boldsymbol{z}{(i)}\right)\right)\right)\right]\)

极端情况下如果D很完美,\(D(x)=1,D(G(z))=0\),最后两项结果都为0,但如果存在误分类,由于log两项结果会变为负数。随着G的输出越来越像x导致D误判,价值函数V也会随之变小。

计算它们的期望(\(\mathbb{E}_{x\sim p}f(x)=\int_xp(x)f(x){\rm d}x\)):

\[V(G,D)=\int_xp_{data}(x)\log D(x)\,{\rm d}x+\int_zp_z(z)\log(1-D(G(z)))\,{\rm d}z \\ =\int_xp_{data}(x)\log D(x)+p_g(x)\log(1-D(x))\,{\rm d}x \]

当D取到最优解时,上面的最大最小博弈价值函数\(V(G,D)\)可以写为:

\[C(G)=\max_DV(G,D)= \\ \mathbb{E}_{x\sim p_{data}}[\log\frac{p_{data}(x)}{p_{data}(x)+p_g(x)}]+\mathbb{E}_{x\sim p_g}[\log\frac{p_g(x)}{p_{data}(x)+p_g(x)}] \]

当\(p_g=p_{data}\),取到\(-\log4\),上式可以写成KL散度的形式:

\[C(G)=-\log4+{\rm KL}(p_{data}||\frac{p_{data}+p_g}{2})+{\rm KL}(p_g||\frac{p_{data}+p_g}{2}) \]

当\(p_g=p_{data}\)时,G取最小值也就是最优解。对于对称的KL散度,可以写成JS散度的形式:

\[C(G)=2\cdot{\rm JS}(p_{data}||p_g)-\log4 \]

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/31437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python根据excel的文件创建文件夹

这几天要整理一点文档,需要批量生成一些文件夹,(其实也可以进一步自动生成各种文档),用到了py的功能,在此记录一下。 1.准备工作 需要两个库支持openpyxl和os 安装 pip install openpyxl2.代码思路 打算…

AI穿戴设备是未来手机的终结者?中国AI商业化的未来预测

AI技术的发展正处于商业化应用的关键阶段,而中国在互联网时代已凭借商业化应用逆袭。AI算法大模型虽强大,但真正普惠民众需与设备深度结合。穿戴式智能设备就成为了新战场,AI算法与穿戴设备结合能释放更大工作效率。私人助理AI将成趋势&#…

锐捷统一上网行为管理与审计系统 static_convert.php 前台RCE漏洞复现

0x01 产品简介 锐捷统一上网行为管理与审计RG-UAC系列是星网锐捷网络有限公司自主研发的上网行为管理与审计产品,具备的上网行为日志审计功能,能够全面、准确、细致的审计并记录多种上网行为日志,包括网页、搜索、外发文件、邮件、论坛、IM等等,并对日志数据进行统计分析,…

gstreamer+qt5实现简易视频播放器

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、安装环境1.QT52.gstreamer 二、代码1.Windows实现 三、测试效果总结 前言 最近在研究mpp,通过gstreamer实现了硬解码,但是我在想我…

ROS实验课(三)

write in advance 此次实验课给我的生活来了沉重的一击,不单单是因为没有做出来,还因为我卡在了 插件 缺失 而无法解决。之前对待实验课,能在操作流程之外有暇思考具体的实现,此次只能记录简单的操作流程部分。 老规矩&#xff…

小米手机怎么用代理换ip:步骤详解与实用指南

在数字化时代,网络安全与隐私保护日益受到重视。对于小米手机用户而言,使用代理换IP已成为提升网络安全性、访问特定网站或绕过地域限制的有效手段。本文将详细介绍如何在小米手机上设置代理以更换IP地址,帮助用户更好地保护个人信息和享受更…

文化保护与数字化时代:Facebook的文化责任

随着数字化时代的到来,全球各地的文化遗产和传统面临着前所未有的挑战和机遇。作为全球最大的社交网络平台之一,Facebook在连接亿万用户的同时,也肩负着重要的文化责任。本文将深入探讨Facebook在文化保护和传承方面的作用和责任,…

入门Rabbitmq

1、什么是消息队列 消息队列:应用之间传递消息的方式,允许应用程序异步发送和接收消息,不需要连接对方 消息:文本字符串,对象.... 队列:存储数据。先进先出 2、应用场景 ①库存系统挂掉之后 MQ会等待&…

修改vscode的主题颜色

1、首选项--主题--颜色主题 2、选择一个喜欢的颜色主题 这样就可以了。

推动产业数字化转型,六个方面引领变革

从工业经济时代走向数字经济时代,世界经济发生着全方位、革命性的变化,产业数字化便是最显著的表现之一。当前,产业数字化不断深入发展,平台经济、工业互联网、智能制造等新业态、新模式不断涌现,成为了数字经济的重要…

php上传zip压缩包到服务器并解压,解析压缩包内excel表格数据导入到数据库

需求: 1.需要管理后台将excel表格中的每条单词数据导入到数据库中. 2.每条单词数据对应的图片和音频文件需要上传到服务器中. 为了让客户上传数据方便,考虑了一下决定通过后台上传压缩包的方式实现 测试压缩包: 压缩包的目录结构 管理后台导入教材 public function upload…

深度学习算法informer(时序预测)(五)(informer整体模型)

整体架构如图 代码如下 lass Informer(nn.Module):def __init__(self, enc_in, dec_in, c_out, seq_len, label_len, out_len, factor5, d_model512, n_heads8, e_layers3, d_layers2, d_ff512, dropout0.0, attnprob, embedfixed, freqh, activationgelu, output_attention …

鸿蒙开发通信与连接:【@ohos.wifi (WLAN)】

WLAN 说明: 本模块首批接口从API version 6开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import wifi from ohos.wifi;wifi.isWifiActive isWifiActive(): boolean 查询WLAN是否已激活。 需要权限: ohos.p…

stable diffusion 模型和lora融合

炜哥的AI学习笔记——SuperMerger插件学习 - 哔哩哔哩接下来学习的插件名字叫做 SuperMerger,它的作用正如其名,可以融合大模型或者 LoRA,一般来说会结合之前的插件 LoRA Block Weight 使用,在调整完成 LoRA 模型的权重后使用改插件进行重新打包。除了 LoRA ,Checkpoint 也…

PCL 拟合二维椭圆(迭代法)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 一般情况,我们会用椭圆拟合二维点,用椭球拟合三维点。在n维中,这些对象被称为超椭球体,由二次方程隐式定义 超椭球的中心是n1向量C,nn矩阵S是正定的,n1向量X是超椭球上的任意点。矩阵S可以用特征分解,S = R…

ATFX Connect四度加冕!荣膺2024最佳机构业务经纪商奖

近期,知名经纪商ATFX凭借在公益、科技、教育及媒体领域的一系列创新营销举措,掀起一波营销热潮,品牌联动效应显著。日前,ATFX又以实力而赢得一项新荣誉。全球知名媒体Holiston Media举办的2024环球金融大奖 (Global Forex Awards …

网站安全防护怎么做?

引言:在当今数字化的时代,网络安全已经成为个人、企业乃至整个社会的一项关键挑战。随着互联网的普及和信息技术的迅猛发展,我们的生活和工作方式日益依赖于各种互联网服务和数据交换。然而,这种依赖也带来了越来越多的安全威胁和…

分层Agent

分层Teams 分层Agent创建tool研究团队工具文档编写团队工具 通用能力定义Agent团队研究团队文档编写团队 添加图层 分层Agent 在前面的示例(Agent管理)中,我们引入了单个管理节点的概念,用于在不同工作节点之间路由工作。 但是&a…

Java学习笔记(一)Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质详细介绍以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 目录 1、内容介绍…

STM32学习和实践笔记(37):DMA实验

1.DMA简介 DMA,全称是Direct Memory Access,中文意思为直接存储器访问。DMA可用于实现外设与存储器之间或者存储器与存储器之间数据传输的高效性。 之所以高效,是因为DMA传输数据移动过程无需CPU直接操作,这样节省的 CPU 资源就可…