第R4周:LSTM-火灾温度预测

文章目录

  • 一、前期准备工作
    • 1.导入数据
    • 2. 数据集可视化
  • 二、构建数据集
    • 1. 数据集预处理
    • 2. 设置X, y
    • 3. 划分数据集
  • 三、模型训练
    • 1. 构建模型
    • 2. 定义训练函数
    • 3. 定义测试函数
    • 4. 正式训练模型
  • 四、模型评估
    • 1. Loss图片
    • 2. 调用模型进行预测
    • 3. R2值评估
  • 总结:

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、前期准备工作

import torch.nn.functional as F
import numpy  as np
import pandas as pd
import torch
from torch    import nn

1.导入数据

data = pd.read_csv("woodpine2.csv")data
TimeTem1CO 1Soot 1
00.00025.00.0000000.000000
10.22825.00.0000000.000000
20.45625.00.0000000.000000
30.68525.00.0000000.000000
40.91325.00.0000000.000000
...............
5943366.000295.00.0000770.000496
5944366.000294.00.0000770.000494
5945367.000292.00.0000770.000491
5946367.000291.00.0000760.000489
5947367.000290.00.0000760.000487

5948 rows × 4 columns

2. 数据集可视化

import matplotlib.pyplot as plt
import seaborn as snsplt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率fig, ax =plt.subplots(1,3,constrained_layout=True, figsize=(14, 3))sns.lineplot(data=data["Tem1"], ax=ax[0])
sns.lineplot(data=data["CO 1"], ax=ax[1])
sns.lineplot(data=data["Soot 1"], ax=ax[2])
plt.show()

在这里插入图片描述

dataFrame = data.iloc[:,1:]dataFrame
Tem1CO 1Soot 1
025.00.0000000.000000
125.00.0000000.000000
225.00.0000000.000000
325.00.0000000.000000
425.00.0000000.000000
............
5943295.00.0000770.000496
5944294.00.0000770.000494
5945292.00.0000770.000491
5946291.00.0000760.000489
5947290.00.0000760.000487

5948 rows × 3 columns

二、构建数据集

1. 数据集预处理

from sklearn.preprocessing import MinMaxScalerdataFrame = data.iloc[:,1:].copy()
sc  = MinMaxScaler(feature_range=(0, 1)) #将数据归一化,范围是0到1for i in ['CO 1', 'Soot 1', 'Tem1']:dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1, 1))dataFrame.shape
(5948, 3)

2. 设置X, y

width_X = 8
width_y = 1##取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []in_start = 0for _, _ in data.iterrows():in_end  = in_start + width_Xout_end = in_end   + width_yif out_end < len(dataFrame):X_ = np.array(dataFrame.iloc[in_start:in_end , ])y_ = np.array(dataFrame.iloc[in_end  :out_end, 0])X.append(X_)y.append(y_)in_start += 1X = np.array(X)
y = np.array(y).reshape(-1,1,1)X.shape, y.shape
((5939, 8, 3), (5939, 1, 1))

检查数据集中是否有空值

print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))
False
False

3. 划分数据集

X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape
(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 1]))
from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(X_test, y_test),batch_size=64, shuffle=False)

三、模型训练

1. 构建模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, num_layers=1, batch_first=True)self.fc0   = nn.Linear(320, 1)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = self.fc0(out) return out[:, -1:, :]   #取1个预测值,否则经过lstm会得到8*1个预测model = model_lstm()
model
model_lstm((lstm0): LSTM(3, 320, batch_first=True)(lstm1): LSTM(320, 320, batch_first=True)(fc0): Linear(in_features=320, out_features=1, bias=True)
)
model(torch.rand(30,8,3)).shape
torch.Size([30, 1, 1])

2. 定义训练函数

# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):size        = len(train_dl.dataset)  num_batches = len(train_dl)   train_loss  = 0  # 初始化训练损失和正确率for x, y in train_dl:  x, y = x.to(device), y.to(device)# 计算预测误差pred = model(x)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距# 反向传播opt.zero_grad()  # grad属性归零loss.backward()  # 反向传播opt.step()       # 每一步自动更新# 记录losstrain_loss += loss.item()if lr_scheduler is not None:lr_scheduler.step()print("learning rate = {:.5f}".format(opt.param_groups[0]['lr']), end="  ")train_loss /= num_batchesreturn train_loss

3. 定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目test_loss   = 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for x, y in dataloader:x, y = x.to(device), y.to(device)# 计算lossy_pred = model(x)loss        = loss_fn(y_pred, y)test_loss += loss.item()test_loss /= num_batchesreturn test_loss

4. 正式训练模型

#设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cpu’)

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 50
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) for epoch in range(epochs):model.train()epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)model.eval()epoch_test_loss = test(test_dl, model, loss_fn)train_loss.append(epoch_train_loss)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))print("="*20, 'Done', "="*20)

learning rate = 0.09990 Epoch: 1, Train_loss:0.00123, Test_loss:0.01228
learning rate = 0.09961 Epoch: 2, Train_loss:0.01404, Test_loss:0.01183
learning rate = 0.09911 Epoch: 3, Train_loss:0.01365, Test_loss:0.01135
learning rate = 0.09843 Epoch: 4, Train_loss:0.01321, Test_loss:0.01085
learning rate = 0.09755 Epoch: 5, Train_loss:0.01270, Test_loss:0.01029
learning rate = 0.09649 Epoch: 6, Train_loss:0.01212, Test_loss:0.00968
learning rate = 0.09524 Epoch: 7, Train_loss:0.01144, Test_loss:0.00901
learning rate = 0.09382 Epoch: 8, Train_loss:0.01065, Test_loss:0.00827
learning rate = 0.09222 Epoch: 9, Train_loss:0.00975, Test_loss:0.00748
learning rate = 0.09045 Epoch:10, Train_loss:0.00876, Test_loss:0.00665
learning rate = 0.08853 Epoch:11, Train_loss:0.00769, Test_loss:0.00580
learning rate = 0.08645 Epoch:12, Train_loss:0.00658, Test_loss:0.00497
learning rate = 0.08423 Epoch:13, Train_loss:0.00548, Test_loss:0.00418
learning rate = 0.08187 Epoch:14, Train_loss:0.00444, Test_loss:0.00346
learning rate = 0.07939 Epoch:15, Train_loss:0.00349, Test_loss:0.00283
learning rate = 0.07679 Epoch:16, Train_loss:0.00268, Test_loss:0.00230
learning rate = 0.07409 Epoch:17, Train_loss:0.00200, Test_loss:0.00188
learning rate = 0.07129 Epoch:18, Train_loss:0.00147, Test_loss:0.00154
learning rate = 0.06841 Epoch:19, Train_loss:0.00107, Test_loss:0.00129
learning rate = 0.06545 Epoch:20, Train_loss:0.00078, Test_loss:0.00110
learning rate = 0.06243 Epoch:21, Train_loss:0.00057, Test_loss:0.00096
learning rate = 0.05937 Epoch:22, Train_loss:0.00042, Test_loss:0.00085
learning rate = 0.05627 Epoch:23, Train_loss:0.00032, Test_loss:0.00078
learning rate = 0.05314 Epoch:24, Train_loss:0.00025, Test_loss:0.00072
learning rate = 0.05000 Epoch:25, Train_loss:0.00021, Test_loss:0.00068
learning rate = 0.04686 Epoch:26, Train_loss:0.00017, Test_loss:0.00065
learning rate = 0.04373 Epoch:27, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.04063 Epoch:28, Train_loss:0.00014, Test_loss:0.00060
learning rate = 0.03757 Epoch:29, Train_loss:0.00013, Test_loss:0.00059
learning rate = 0.03455 Epoch:30, Train_loss:0.00012, Test_loss:0.00058
learning rate = 0.03159 Epoch:31, Train_loss:0.00012, Test_loss:0.00057
learning rate = 0.02871 Epoch:32, Train_loss:0.00011, Test_loss:0.00056
learning rate = 0.02591 Epoch:33, Train_loss:0.00011, Test_loss:0.00055
learning rate = 0.02321 Epoch:34, Train_loss:0.00011, Test_loss:0.00055
learning rate = 0.02061 Epoch:35, Train_loss:0.00011, Test_loss:0.00055
learning rate = 0.01813 Epoch:36, Train_loss:0.00012, Test_loss:0.00055
learning rate = 0.01577 Epoch:37, Train_loss:0.00012, Test_loss:0.00055
learning rate = 0.01355 Epoch:38, Train_loss:0.00012, Test_loss:0.00056
learning rate = 0.01147 Epoch:39, Train_loss:0.00012, Test_loss:0.00056
learning rate = 0.00955 Epoch:40, Train_loss:0.00013, Test_loss:0.00057
learning rate = 0.00778 Epoch:41, Train_loss:0.00013, Test_loss:0.00058
learning rate = 0.00618 Epoch:42, Train_loss:0.00014, Test_loss:0.00058
learning rate = 0.00476 Epoch:43, Train_loss:0.00014, Test_loss:0.00059
learning rate = 0.00351 Epoch:44, Train_loss:0.00014, Test_loss:0.00059
learning rate = 0.00245 Epoch:45, Train_loss:0.00014, Test_loss:0.00059
learning rate = 0.00157 Epoch:46, Train_loss:0.00014, Test_loss:0.00060
learning rate = 0.00089 Epoch:47, Train_loss:0.00014, Test_loss:0.00060
learning rate = 0.00039 Epoch:48, Train_loss:0.00014, Test_loss:0.00060
learning rate = 0.00010 Epoch:49, Train_loss:0.00014, Test_loss:0.00060
learning rate = 0.00000 Epoch:50, Train_loss:0.00014, Test_loss:0.00060
==================== Done ====================

四、模型评估

1. Loss图片

import matplotlib.pyplot as plt
from datetime import datetime
current_time = datetime.now() # 获取当前时间plt.figure(figsize=(5, 3),dpi=120)plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')plt.title('Training and Validation Loss')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.legend()
plt.show()

在这里插入图片描述

2. 调用模型进行预测

predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1         = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one       = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

在这里插入图片描述

3. R2值评估

from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

均方根误差: 6.92733
R2: 0.83259

总结:

本周主要学习了LSTM模型,并且通过实践更加深入地了解到了LSTM模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/78433.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

toCharArray作用

toCharArray() 是 Java 中 String 类的一个方法&#xff0c;其作用是将字符串对象转换为一个字符数组。下面为你详细介绍其用法、原理和示例。 方法定义 toCharArray() 方法在 java.lang.String 类里被定义&#xff0c;方法签名如下 public char[] toCharArray() 此方法没有…

STM32八股【6】-----CortexM3的双堆栈(MSP、PSP)设计

STM32的线程模式&#xff08;Thread Mode&#xff09;和内核模式&#xff08;Handler Mode&#xff09;以及其对应的权级和堆栈指针 线程模式&#xff1a; 正常代码执行时的模式&#xff08;如 main 函数、FreeRTOS任务&#xff09; 可以是特权级&#xff08;使用MSP&#xff…

驱动支持的最高CUDA版本与实际安装的Runtime版本

查看电脑上安装的CUDA版本的多种方法&#xff0c;适用于不同系统和场景。 方法一&#xff1a;通过命令行工具 1. 查看CUDA Driver API版本&#xff08;显卡驱动支持的CUDA版本&#xff09; 命令&#xff1a;nvidia-smi操作&#xff1a; 打开终端&#xff08;Windows为CMD/Pow…

Python CT图像预处理——基于ITK-SNAP

Python CT图像预处理——nii格式读取、重采样、窗宽窗位设置_python读取nii-CSDN博客 基于原文指出以下几个问题&#xff1a;文件路径设置模糊&#xff1b;nilabel里面使用的get_data() 方法已经过时&#xff1b;需要导入scikit-image&#xff0c;还要导入一个matplotlib。 一…

【MQ篇】RabbitMQ之消息持久化!

目录 一、 交换机持久化 (Exchange Persistence)二、 队列持久化 (Queue Persistence)三、 消息持久化 (Message Persistence)四、 持久化的“黄金三角” &#x1f531;&#xff1a;三者缺一不可&#xff01;五、 来&#xff0c;完整的代码示例&#xff08;整合持久化和确认机制…

[AI技术(二)]JSONRPC协议MCPRAGAgent

Agent概述(一) AI技术基础(一) JSON-RPC 2.0 协议详解 JSON-RPC 2.0 是一种基于 JSON 的轻量级远程过程调用(RPC)协议,旨在简化跨语言、跨平台的远程通信。以下从协议特性、核心结构、错误处理、批量请求等角度进行详细解析: 一、协议概述 1. 设计原则 • 简单性:…

LeetCode238_除自身以外数组的乘积

LeetCode238_除自身以外数组的乘积 标签&#xff1a;#数组 #前缀和Ⅰ. 题目Ⅱ. 示例0. 个人方法一&#xff1a;暴力循环嵌套0. 个人方法二&#xff1a;前缀和后缀分别求积 标签&#xff1a;#数组 #前缀和 Ⅰ. 题目 给你一个整数数组 nums&#xff0c;返回 数组 answer &#…

算法笔记.spfa算法(bellman-ford算法的改进)

题目&#xff1a;&#xff08;来源于AcWing&#xff09; 给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c; 边权可能为负数。 请你求出 1 号点到 n 号点的最短距离&#xff0c;如果无法从 1 号点走到 n 号点&#xff0c;则输出 impossible。 …

07 Python 字符串全解析

文章目录 一. 字符串的定义二. 字符串的基本用法1. 访问字符串中的字符2. 字符串切片3. 字符串拼接4. 字符串重复5.字符串比较6.字符串成员运算 三. 字符串的常用方法1. len() 函数2. upper() 和 lower() 方法3. strip() 方法4. replace() 方法5. split() 方法 四. 字符串的进阶…

Java集成Zxing和OpenCV实现二维码生成与识别工具类

Java集成Zxing和OpenCV实现二维码生成与识别工具类 本文将介绍如何使用Java集成Zxing和OpenCV库&#xff0c;实现二维码的生成和识别功能。识别方法支持多种输入形式&#xff0c;包括File对象、文件路径和Base64编码。 一、环境准备 添加Maven依赖 <dependencies><…

【专题刷题】二分查找(二)

&#x1f4dd;前言说明&#xff1a; 本专栏主要记录本人的基础算法学习以及LeetCode刷题记录&#xff0c;按专题划分每题主要记录&#xff1a;&#xff08;1&#xff09;本人解法 本人屎山代码&#xff1b;&#xff08;2&#xff09;优质解法 优质代码&#xff1b;&#xff…

Java—ThreadLocal底层实现原理

首先&#xff0c;ThreadLocal 本身并不提供存储数据的功能&#xff0c;当我们操作 ThreadLocal 的时候&#xff0c;实际上操作线程对象的一个名为 threadLocals 成员变量。这个成员变量的类型是 ThreadLocal 的一个内部类 ThreadLocalMap&#xff0c;它是真正用来存储数据的容器…

Elasticsearch(ES)中的脚本(Script)

文章目录 一. 脚本是什么&#xff1f;1. lang&#xff08;脚本语言&#xff09;2. source&#xff08;脚本代码&#xff09;3. params&#xff08;参数&#xff09;4. id&#xff08;存储脚本的标识符&#xff09;5. stored&#xff08;是否为存储脚本&#xff09;6. script 的…

客户联络中心能力与客户匹配方式

在数字化时代&#xff0c;客户联络中心作为企业与客户沟通的核心枢纽&#xff0c;其服务能力与客户需求的精准匹配至关重要。随着客户期望的不断提升&#xff0c;传统的“一刀切”服务模式已难以满足个性化需求&#xff0c;如何通过智能化的手段实现服务能力与客户的高效匹配&a…

深入理解网络原理:UDP协议详解

在计算机网络中&#xff0c;数据的传输是通过各种协议实现的&#xff0c;其中用户数据报协议&#xff08;UDP&#xff0c;User Datagram Protocol&#xff09;作为一种重要的传输层协议&#xff0c;广泛应用于实时通信、视频流、在线游戏等场景。本文将深入探讨UDP协议的特性、…

vscode切换Python环境

跑深度学习项目通常需要切换python环境&#xff0c;下面介绍如何在vscode切换python环境&#xff1a; 1.点击vscode界面左上角 2.在弹出框选择对应kernel

【MCP Node.js SDK 全栈进阶指南】中级篇(4):MCP错误处理与日志系统

前言 随着MCP应用的规模和复杂性增长,错误处理与日志系统的重要性也日益凸显。一个健壮的错误处理策略和高效的日志系统不仅可以帮助开发者快速定位和解决问题,还能提高应用的可靠性和可维护性。本文作为中级篇的第四篇,将深入探讨MCP TypeScript-SDK中的错误处理与日志系统…

【Qt】文件

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;Qt 目录 一&#xff1a;&#x1f525; Qt 文件概述 二&#xff1a;&#x1f525; 输入输出设备类 三&#xff1a;&#x1f525; 文件读写类 四&#xff1a;&#x1f525; 文件和目录信息类 五&…

代码随想录算法训练营第五十八天 | 1.拓扑排序精讲 2.dijkstra(朴素版)精讲 卡码网117.网站构建 卡码网47.参加科学大会

1.拓扑排序精讲 题目链接&#xff1a;117. 软件构建 文章讲解&#xff1a;代码随想录 思路&#xff1a; 把有向无环图进行线性排序的算法都可以叫做拓扑排序。 实现拓扑排序的算法有两种&#xff1a;卡恩算法&#xff08;BFS&#xff09;和DFS&#xff0c;以下BFS的实现思…

Qt实现语言切换的完整方案

在Qt中实现语言动态切换需要以下几个关键步骤&#xff0c;我将提供一个完整的实现方案&#xff1a; 一、准备工作 在代码中使用tr()标记所有需要翻译的字符串 cpp button->setText(tr("Submit")); 创建翻译文件 在.pro文件中添加&#xff1a; qmake TRANSLATION…