Fine-tuning和模型训练的关系

概述

Fine-tuning和模型训练不是完全相同的概念,但它们之间有密切的关系,都是机器学习和深度学习过程中的重要步骤。

模型训练是一个更广泛的概念,指的是使用数据去调整模型的内部参数,以使得模型能够从输入数据中学习并做出预测或决策。这个过程通常包括前向传播(forward pass)、计算损失函数(loss function)、反向传播(backward pass)以及参数更新等步骤。模型训练可以是从零开始(随机初始化参数),也可以是在预训练模型基础上进行。

**Fine-tuning(微调)**是模型训练的一个特殊形式,专门指在预训练模型(pre-trained model)的基础上进行的额外训练过程。预训练模型通常已经在大规模数据集上进行了广泛的训练,学习到了丰富的特征表示。这些模型可以是图像分类、文本理解、语音识别等各种领域的模型。当面临一个新的、规模较小的任务时,我们不从头开始训练模型,而是取用预训练模型作为起点,仅对模型的部分或全部参数进行有限次迭代的训练,使其适应新的任务需求。这样做可以显著减少训练时间和所需数据量,同时往往能获得比从头训练更好的性能。

关系:可以说,Fine-tuning是模型训练的一个子集,专注于在预训练好的模型上进行效率更高的二次训练。它利用了预训练阶段学到的通用知识,并在此基础上进行特定任务的优化。

何时需要Fine-Tuning

  1. 数据量有限:如果针对特定任务的数据集相对较小,直接从头训练可能会导致过拟合,此时使用预训练模型进行微调更为合适。
  2. 计算资源限制:训练大型模型需要大量计算资源。微调可以节省资源,因为只需要对模型进行有限的额外训练。
  3. 性能要求高:预训练模型在广泛数据上学习到了强大的特征表示,通过微调可以快速提升模型在特定任务上的性能。
  4. 领域特定任务:当任务具有特定领域特性时,微调可以帮助模型更好地理解和生成该领域相关的输出。

综上,Fine-tuning是模型训练的一个高效策略,尤其适合资源受限或数据量不足的情况下,快速提升模型在特定任务上的表现。

示例

当然,让我们通过几个生动的例子来进一步阐述Fine-tuning的概念及其应用场景。

示例1:语言翻译模型

想象一下,你有一本《世界美食大全》,这本书就像是一个预训练模型,里面记录了各种语言的基本语法和词汇。这本书本身是为了帮助人们理解多种语言的通用结构,但并未专门针对任何一种语言的方言或特定菜谱。

现在,你想用这本书来帮助你翻译意大利乡村食谱。这些食谱中充满了地方特色词汇和表达方式,而《世界美食大全》虽然广泛,却不够精确。于是,你决定根据这本乡村食谱的内容对《世界美食大全》做一些“微调”。你添加了一些新的词汇解释和特定表达的翻译规则,让这本书更贴合乡村食谱的语言特点。这个过程就像是在预训练的多语言模型上,通过添加和调整特定于意大利乡村菜肴的术语和表达,使得模型能够更准确地翻译这类特定内容。

示例2:图像识别应用

假设你得到了一个已经学会识别成千上万种动物的智能相机应用,这个应用就像一个预训练的图像识别模型,能识别从猫狗到长颈鹿的各种动物。但是,你打算用这个相机来监测自家果园里的害虫,比如苹果蠹蛾。

由于预训练模型可能没有专门学习识别这种特定害虫,你决定对它进行微调。你收集了一组关于苹果蠹蛾的照片,然后用这些照片对相机应用进行针对性训练,让它不仅能识别一般的昆虫,还能准确区分出苹果蠹蛾。这样一来,即便在复杂环境中,相机也能迅速且准确地识别出目标害虫。

示例3:音乐推荐系统

想象你正在设计一个音乐推荐系统,初步模型已经在大量流行音乐数据上训练过,能大致了解用户的音乐口味。但你的目标是为爵士乐爱好者提供更精准的推荐。

于是,你采取微调策略,不再用广泛流行的音乐数据训练,而是专门搜集了一个包含各种爵士乐风格的曲目库来进一步训练模型。这个过程让模型学会了区分摇摆乐、比博普、冷爵士等不同爵士风格,从而能更精准地为用户推荐他们可能喜欢的爵士乐作品。

通过这些例子,我们可以看到,Fine-tuning就像是对一个已经具备广泛知识的专家进行特定领域的深造,使其在特定任务或领域内变得更加专业和高效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/19182.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件架构设计属性之三:结构性属性浅析

文章目录 引言一、结构性属性的定义二、结构性属性的关键要素1. 组件化2. 模块化3. 层次化4. 接口定义5. 数据流6. 依赖管理 三、结构性属性的设计原则1. 高内聚低耦合2. 松耦合3. 清晰的接口4. 可维护性5. 可扩展性 四、结构性属性的实现策略1. 组件划分2. 模块化设计3. 接口设…

【AREngine BUG 解决方法】无法获取有效的相机图像尺寸

近期拿了一台 华为mate20 Pro的手机,在运行AR示例的过程中出现了黑屏。 问题排查 SDK版本:com.huawei.hms:arenginesdk:3.7.0.3 定位 经排查,发现(ARCamera对象的相机内参) getImageDimensions()返回的图像尺寸的width和height都为0。 这…

Kong api网关实战教程

1. kong介绍 Kong是一款基于OpenResty(NginxLua模块)编写的高可用、易扩展的,由Mashape公司开源的API Gateway项目。Kong是基于NGINX和Apache Cassandra或PostgresQL构建的,能据供易于使用的RSTTAP[来操作和配置API管理系统,所以它可以水平扩…

【上】王树森《小红书推荐系统公开课》- 课程笔记(推荐系统基础、召回、排序)

写在前面 本文为王树森老师《小红书推荐系统公开课》的课程笔记 课程来源:ShusenWang的个人空间-ShusenWang个人主页-哔哩哔哩视频 (bilibili.com)课程资料:GitHub - wangshusen/RecommenderSystem 由于篇幅较长,分为【上】【下】两篇文章…

C#中的比较和逻辑运算符

在C#编程中,比较和逻辑运算符是控制程序流程和执行条件判断的重要工具。以下是C#中一些常用的比较和逻辑运算符及其示例。 相等运算符 运算符用于比较两个值是否相等。如果相等,返回 true;否则返回 false。 示例 int a 5, b 5; bool is…

【busybox记录】【shell指令】unlink

目录 内容来源: 【GUN】【unlink】指令介绍 【busybox】【unlink】指令介绍 【linux】【unlink】指令介绍 使用示例: 删除文件 - 默认 常用组合指令: 指令不常用/组合用法还需继续挖掘: 内容来源: GUN &#x…

深入解析Web前端三大主流框架:Angular、React和Vue

Web前端三大主流框架分别是Angular、React和Vue。下面我将为您详细介绍这三大框架的特点和使用指南。 Angular 核心概念: 组件(Components): 组件是Angular应用的构建块,每个组件由一个带有装饰器的类、一个HTML模板、一个CSS样式表组成。组件通过输入(@Input)和输出(…

【OrangePi AIpro】开箱初体验以及OAK深度相机测试

1. 简介 Orangepi AIPRO 是一款采用昇腾AI技术路线,集成4核64位处理器AI处理器的单板计算机,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接eMMC模块,支持双4K高清输出。 Orange Pi AIpr…

VirtualDisplay图像数据流trace分析

1. 计算器App更新图像帧(QueuedBuffer - ViewRootImpl[Calculator]#0BLAST#0),调用eglSwapBuffersWithDamageKHR,然后queueBuffer向surfaceflinger提交图像buffer 2. sf调用latchBuffer获取buffer,进行一些状态的处理…

CBK-D2-安全与架构工程.md

CBK-D2-安全与架构工程 密码学和对称密钥算法 密码通信的基础知识 明文P-plaintext、加密encrypt、密文C-ciphertext、解密decrypt、密钥Key 多数情况下,密钥无非是一个极大的二进制数 每一种算法都有一个特定密钥控制key space,是一个特定的数值范围 密钥空间由位大小b…

数字图像处理系列 | 线性滤波(高斯滤波)(3)

我们知道了什么是 线性平移不变系统是在做卷积操作 之后,我们发展出了一些非常简单的 线性滤波, 去增强图片,提取图片特征 文章目录 1. 卷积如何在离散图片中工作的Vis 原图和mask做卷积时发生了什么首先,如何得到 (i.j)位置的卷积…

操作系统中的内存管理

虚拟内存 操作系统会提供一种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲…

Python 技能提升(一)

python注释规范 # Add commit for you codes. # The proper addition of comments is so beautiful.from abc import abstractmethoddef add(a: int, b: int) -> int:# You can write some necessary notes here.# Such as the role of functions, the types and roles of …

Slurm集群使用基础

Introduction 我们在做生物信息分析时,对于大规模的上游数据的处理,一般需要在大型服务器或集群上进行。我最早接触并使用的是一个基于SLURM调度系统的集群,在此记录一下基础使用方法。 高性能计算集群(High-Performance Comput…

React 使用JSX或者TSX渲染页面

02 Rendering with JSX Your first JSX content In this section, we’ll implement the obligatory " Hello, World " JSX application. At this point, we’re just dipping our toes in the water; more in-depth examples will follow. We’ll also discuss wh…

vs code中编写c++基本使用以及问题总结

vs code基本使用以及总结 launch.json作用 这个文件配置了调试器的设置,允许你定义如何启动和调试你的程序。这包括配置执行路径、传递给程序的参数、环境变量以及特定语言或框架的调试器选项。 常用配置 "version": "0.2.0": 这是配置文件…

kotlin基础之协程

Kotlin协程(Coroutines)是Kotlin提供的一种轻量级的线程模型,它允许我们以非阻塞的方式编写异步代码,而无需使用回调、线程或复杂的并发API。协程是一种用户态的轻量级线程,它可以在需要时挂起和恢复,从而有…

安卓中的图片压缩

安卓中如何进行图片压缩? 在安卓中进行图片压缩通常有以下几种方法: 质量压缩: 通过降低图片的质量来减小文件大小。这可以通过Bitmap的compress()方法实现,其中可以设置压缩质量(0-100)。 ByteArrayOutputStream baos…

【渗透测试】|文件上传

1、安装使用蚁剑 https://blog.csdn.net/weixin_42474304/article/details/116376746 1、登陆dvwa,进入初级文件上传&#xff0c;上传一句话木马文件cmd.php&#xff0c; //cmd.php <?php eval($_POST[ccit]); ?> //eval: 执行命令的函数 //ccit:一句话木马文件的参数…

渗透测试工具Cobalt strike-2.CS基础使用

三、结合metasploit,反弹shell 在kali中开启使用命令开启metasploit msfconsole ┌──(root㉿oldboy)-[~] └─# msfconsole --- msf6 > use exploit/multi/handler [*] Using configured payload generic/shell_reverse_tcp --- msf6 exploit(multi/handler) > show …