Slurm集群使用基础

Introduction

我们在做生物信息分析时,对于大规模的上游数据的处理,一般需要在大型服务器或集群上进行。我最早接触并使用的是一个基于SLURM调度系统的集群,在此记录一下基础使用方法。

高性能计算集群(High-Performance Computing Cluster,简称HPC集群)是一种计算系统,通过将多台计算机(通常称为节点)连接在一起,协同工作来解决需要大量计算资源的问题。这些集群被广泛应用于科学研究、工程计算、金融建模、大数据分析等领域。

SLURM(Simple Linux Utility for Resource Management)是一种开放源码的资源管理和任务调度系统,广泛应用于高性能计算(HPC)集群。SLURM负责分配计算资源、调度作业、监控系统状态和用户任务等工作,是HPC集群中不可或缺的一部分。

主要功能

  1. 资源分配:SLURM能够根据用户需求和集群资源情况,动态分配计算节点、CPU、内存和其他资源,确保资源的高效利用。

  2. 任务调度:SLURM可以将用户提交的计算任务按照优先级、依赖关系和资源需求进行调度,决定何时在何处执行这些任务。

  3. 任务管理:用户可以通过SLURM提交、监控和管理他们的任务,包括查看任务状态、取消任务、重新排队等操作。

  4. 负载均衡:SLURM通过智能调度算法,尽量均衡各节点的负载,避免资源浪费,提高集群的整体效率。

  5. 作业依赖管理:支持复杂的作业依赖关系管理,例如在一个作业完成后再启动另一个作业,或多个作业之间的依赖关系管理。

工作流程

  1. 提交作业:用户通过sbatch命令提交编写好的作业脚本,描述作业的资源需求(如节点数、CPU数、内存等)和执行命令。
  2. 资源分配:SLURM的调度器(slurmctld)根据当前的资源可用情况和作业队列中的优先级,分配资源给新提交的作业。
  3. 作业执行:分配到资源的作业通过srun命令在指定的节点上启动并运行。
  4. 作业监控:运行中的作业由slurmd守护进程进行监控,用户可以使用squeue命令查看作业的执行状态。
  5. 结果处理:作业完成后,输出结果通常会被保存到用户指定的文件中,用户可以通过slurm提供的命令查看和管理这些结果。

优势

  • 高可扩展性:能够管理从几台到上百万台计算节点的集群。
  • 开源和社区支持:丰富的文档和活跃的用户社区,便于问题解决和功能扩展。
  • 灵活性和可配置性:支持多种调度策略和配置,适应不同的工作负载和需求。

基础使用

常用命令

  1. sinfo: 查看队列状态和信息

    • 用途: 显示集群的分区和节点状态信息。
    • 选项:
      • -s 简要格式输出
      • -N 显示每个节点的信息
      • -p <partition> 只显示特定分区的信息
    • 输出字段:
      • PARTITION: 分区名称
      • AVAIL: 节点可用性状态(up/down)
      • TIMELIMIT: 分区的时间限制
      • NODES: 分区中的节点数量
      • STATE: 节点状态:drain(节点故障),alloc(节点在用),idle(节点可用),down(节点下线),mix(节点被占用,但仍有剩余资源)
      • NODELIST: 节点名称列表
  2. sacct: 显示用户作业历史

    • 用途: 查询作业历史记录,显示已完成和正在进行的作业信息。
    • 选项:
      • -j <jobid> 查询特定作业
      • -S <YYYY-MM-DD> 查询指定开始日期的作业
      • -u <username> 查询特定用户的作业
    • 输出字段:
      • JobID: 作业ID
      • JobName: 作业名称
      • Partition: 分区名称
      • Account: 用户账户
      • State: 作业状态(COMPLETED、FAILED、CANCELLED等)
      • Elapsed: 作业运行时间
  3. squeue: 显示当前作业状态

    • 用途: 显示当前在队列中排队和运行的作业状态。
    • 选项:
      • -u <username> 只显示特定用户的作业
      • -p <partition> 只显示特定分区的作业
    • 输出字段:
      • JOBID: 作业ID
      • PARTITION: 分区名称
      • NAME: 作业名称
      • USER: 用户名
      • ST: 作业状态(PD排队;R运行;S挂起;CG正在退出)
      • TIME: 作业运行时间
      • NODES: 作业使用的节点数量
      • NODELIST(REASON): 作业所在节点或排队原因
  4. sbatch: 提交作业

    • 用途: 提交批处理作业脚本。
    • 示例:
      sbatch my_job_script.sh
      
    • 常用选项:
      • --job-name=<name> 设置作业名称
      • --partition=<partition> 指定作业提交的分区
      • --time=<time> 设置作业运行时间限制
  5. scancel: 取消指定作业

    • 用途: 取消一个或多个作业。
    • 示例:
      scancel 12345
      
    • 选项:
      • -u <username> 取消特定用户的所有作业
      • -p <partition> 取消特定分区中的作业
  6. pestat: 节点使用信息

    • 用途: 显示集群节点的使用情况和状态信息(此命令可能是集群特定的,或者通过管理员定义的别名)。
    • 示例:
      pestat
      
  7. sacct -j <jobid>: 检查已完成作业的信息

    • 用途: 查看特定作业的详细信息,包括如何完成或失败。
    • 示例:
      sacct -j 12345
      
  8. seff <jobid>: 查看已完成任务的资源使用情况

    • 用途: 显示特定作业的资源使用效率,包括CPU、内存等。
    • 示例:
      seff 12345
      
  9. scontrol show job <jobid>: 显示作业细节

    • 用途: 提供有关特定作业的详细信息,包括作业配置和当前状态。
    • 示例:
      scontrol show job 12345
      

其他有用的SLURM命令

  1. srun: 直接运行并行作业

    • 用途: 在分配的资源上运行一个并行任务,通常用于交互式会话。
    • 示例:
      srun --partition=short --ntasks=4 my_program
      
  2. scontrol: 管理SLURM系统

    • 用途: 用于查询和更改SLURM系统的配置和状态。
    • 常用命令:
      • scontrol show partition 显示分区信息
      • scontrol update NodeName=<node> State=RESUME 恢复节点
  3. sreport: 生成使用报告

    • 用途: 生成有关作业、用户和账户的资源使用报告。
    • 示例:
      sreport cluster utilization
      

作业参数

  • #SBATCH --job-name 作业名称
  • #SBATCH --output 标准输出文件:如/share/home/pengchen/work/%x_%A_%a.out
  • #SBATCH --error ERROR输出文件:如/share/home/pengchen/work/%x_%A_%a.err
  • #SBATCH --partition 工作分区,我们用cpu之类的
  • #SBATCH --nodelist 可以制定在哪个节点运行任务
  • #SBATCH --exclude 可以设置不放在某个节点跑任务
  • #SBATCH --nodes 使用nodes数量
  • #SBATCH --ntasks tasks数量,可能分配给不同node
  • #SBATCH --ntasks-per-node 每个节点的tasks数量,由于我们只有1 node,所以ntasks和ntasks-per-node是相同的
  • #SBATCH --cpus-per-task 每个task使用的core的数量(默认 1 core per task),同一个task会在同一个node
  • #SBATCH --mem 这个作业要求的内存 (Specified in MB,GB)
  • #SBATCH --mem-per-cpu 每个core要求的内存 (Specified in MB,GB)

在SLURM中,一个任务(task)被理解为一个进程(process),一个多进程(multi-process)程序由多个任务组成。相反,多线程(multithreaded)程序只有一个任务,但这个任务使用多个logical CPU。更好的理解ntasks,参考what does the ntasks or n tasks does in slurm

例子:

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --output=/share/home/pengchen/work/%x_%A_%a.out
#SBATCH --error=/share/home/pengchen/work/%x_%A_%a.err
#SBATCH --partition=cpu
#SBATCH --nodes=1
#SBATCH --tasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=2g
#SBATCH --time=14-00:00:00
echo start: `date +'%Y-%m-%d %T'`
start=`date +%s`
####################do something####################
echo end: `date +'%Y-%m-%d %T'`
end=`date +%s`
echo TIME:`expr $end - $start`s

把上面的内容保存为myjob.sh文件,然后使用sbatch即可提交排队。

tmux+srun

tmux是一个 terminal multiplexer(终端复用器),它可以启动一系列终端会话。

在我们使用命令行时,打开一个终端窗口,会话开始,执行某些命令如sleep 100,关闭此终端窗口,会话结束,sleep命令会话随之被关闭而非等到正常结束。

当我们希望运行的程序不会受会话窗口的关闭而随之消失,我们会使用到类似于nohup这样的方式将运行的命令后台化的。

但集群并不可以如此:当我们申请节点资源后到该节点去执行nohup时看上去程序已经后台运行了,但当会话窗口关闭后作业将会被视为结束,节点则会运行相应的清理动作结束掉后台运行的程序;此时tmux的功能便显现出优势。

  1. 申请节点资源(使用SLURM调度器):

    salloc -N 1 -n 1 --time=01:00:00
    

    这条命令申请一个节点,时间为1小时。

  2. 在节点上启动tmux会话

    tmux new-session -s myjob # 新建一个名称为myjob的会话
    
  3. 运行任务

    ./run_my_simulation.sh
    
  4. 分离会话
    可以在不影响任务运行的情况下关闭终端窗口或断开连接:

    # Ctrl+b,然后按 d 
    # 或者
    tmux detach
    
  5. 重新连接到会话(如有需要):

    tmux ls # 查看所有的会话
    tmux attach-session # 默认进入第一个会话
    tmux attach-session -t myjob # 进入到名称为myjob的会话
    
  6. 关闭会话

会话的使命完成后是一定要关闭的;可以使用exit退出,快捷键Ctrl+d

或者使用tmux配合srun申请资源:

tmux
srun -n 1 --pty /bin/bash
tmux detach

此窗口作业会一直运行,直到手动退出/作业时间限制。

module

在SLURM集群环境中,模块管理系统(如LmodEnvironment Modules)常用于管理和切换不同的软件环境。模块系统可以简化软件依赖和版本控制,允许用户动态加载或卸载软件包和库。

模块系统使用模块文件来描述如何设置环境变量(如PATHLD_LIBRARY_PATH等),以便使用特定的软件包或库。常用命令包括module loadmodule unloadmodule list等。

  1. 查看可用模块

    module avail
    

    这将列出所有可用的模块。

  2. 加载模块

    module load module_name
    

    例如,加载GCC编译器:

    module load gcc
    
  3. 卸载模块

    module unload module_name
    

    例如,卸载GCC编译器:

    module unload gcc
    
  4. 显示已加载模块

    module list
    

    这将显示当前会话中已加载的模块。

  5. 显示模块信息

    module show module_name
    

    例如,查看GCC模块的详细信息:

    module show gcc
    

在SLURM作业脚本中使用模块

在提交到SLURM的作业脚本中,可以使用模块命令来设置所需的软件环境。以下是一个示例SLURM作业脚本:

#!/bin/bash
#SBATCH --job-name=myjob            # 作业名称
#SBATCH --output=myjob.out          # 标准输出和错误日志
#SBATCH --error=myjob.err           # 错误日志文件
#SBATCH --ntasks=1                  # 运行的任务数
#SBATCH --time=01:00:00             # 运行时间
#SBATCH --partition=compute         # 作业提交的分区# 加载模块
module load gcc
module load python# 打印加载的模块
module list# 运行命令
python my_script.py

在这个脚本中,module load gccmodule load python 用于加载所需的GCC编译器和Python环境。module list命令将打印当前加载的模块,方便调试。

conda

集群上一般用户都没有root权限,无法使用普通服务器的sudo安装软件方法,也无法使用docker(但是可以用singularity,下次可以讲讲这个)。建议使用conda进行环境配置和软件安装:

Conda 是一个开源的软件包管理和环境管理系统,支持跨平台使用,包括Linux、macOS和Windows。Conda 可以用于安装、运行和更新各种软件包和依赖,并能在不同环境之间轻松切换。用户可以在自己的家目录中安装Miniconda,这是Conda的一个轻量级版本,只包含包管理系统和Python。

  • 安装Miniconda
  1. 下载Miniconda安装脚本

    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    
  2. 运行安装脚本

    bash Miniconda3-latest-Linux-x86_64.sh
    
  3. 按照提示完成安装。安装完成后,您可能需要重启终端或运行以下命令来激活Conda:

    source ~/.bashrc
    
  • 使用Conda创建和管理环境
  1. 创建新环境

    conda create --name myenv python=3.8
    

    这将创建一个名为myenv的新环境,并安装Python 3.8。

  2. 激活环境

    conda activate myenv
    

    激活后,所有在此环境下运行的命令都将使用该环境中的软件和库。

  3. 安装软件包

    conda install numpy scipy
    

    这将在当前激活的环境中安装NumPy和SciPy。

  4. 列出已安装环境

    conda env list
    
  5. 停用环境

    conda deactivate
    
  6. 删除环境

    conda remove --name myenv --all
    

在提交到SLURM的作业脚本中,可以激活Conda环境以确保作业在正确的软件环境中运行。以下是一个示例SLURM作业脚本:

#!/bin/bash
#SBATCH --job-name=myjob            # 作业名称
#SBATCH --output=myjob.out          # 标准输出和错误日志
#SBATCH --error=myjob.err           # 错误日志文件
#SBATCH --ntasks=1                  # 运行的任务数
#SBATCH --time=01:00:00             # 运行时间
#SBATCH --partition=compute         # 作业提交的分区# 加载Conda
source ~/miniconda3/etc/profile.d/conda.sh# 激活环境
conda activate myenv# 运行命令
python my_script.py

Conda与其他工具的比较

  1. Conda vs. Virtualenv

    • Conda不仅管理Python包,还能管理非Python软件包和库,如R、C++库等。
    • Virtualenv专注于Python环境,轻量级但功能不如Conda全面。
  2. Conda vs. Docker/Singularity

    • Conda在不需要root权限的情况下,为用户提供了灵活的软件管理方式。
    • Docker需要root权限,但提供更隔离的容器化环境。集群上通常不能使用。
    • Singularity与Docker类似,但更适合在HPC环境中使用,不需要root权限。将在后续讨论。

关注公众号,获取最新推送

关注公众号 ‘bio llbug’,获取最新推送。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/19164.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【渗透测试】|文件上传

1、安装使用蚁剑 https://blog.csdn.net/weixin_42474304/article/details/116376746 1、登陆dvwa,进入初级文件上传&#xff0c;上传一句话木马文件cmd.php&#xff0c; //cmd.php <?php eval($_POST[ccit]); ?> //eval: 执行命令的函数 //ccit:一句话木马文件的参数…

渗透测试工具Cobalt strike-2.CS基础使用

三、结合metasploit,反弹shell 在kali中开启使用命令开启metasploit msfconsole ┌──(root㉿oldboy)-[~] └─# msfconsole --- msf6 > use exploit/multi/handler [*] Using configured payload generic/shell_reverse_tcp --- msf6 exploit(multi/handler) > show …

什么是访问控制漏洞

什么是AC Bugs&#xff1f; 实验室 Vertical privilege escalation 仅通过隐藏目录/判断参数来权限控制是不安全的&#xff08;爆破url/爬虫/robots.txt/Fuzz/jsfinder&#xff09; Unprotected functionality 访问robots.txt 得到隐藏目录&#xff0c;访问目录 &#xff0c;…

基于Visual Studio版本的AI编程助手

Visual Studio 是一个出色的 IDE,可用于构建适用于 Windows、Mac、Linux、iOS 和 Android 的丰富、精美的跨平台应用程序。 使用一系列技术(例如 WinForms、WPF、WinUI、MAUI 或 Xamarin)构建丰富。 1、安装 点击上方工具栏拓展选项,选择管理拓展选项 接着在联机页面中搜索&q…

基于51单片机的室内空气质量检测-仿真设计

本设计是基于单片机的空气质量检测设计&#xff0c;主要实现以下功能&#xff1a; 可实现通过SGP30测量二氧化碳及甲醛浓度&#xff0c;当超过设置的最大值时&#xff0c;进行报警及通风和净化空气处理 可实现通过MQ-4测量甲烷浓度&#xff0c;当超过设置的最大值时&#xff0…

压力测试JMeter

压力测试JMeter 1 下载JMeter1.1 测试计划1.2 JMeter Address Already in use 错误解决1.3 java 内存模型1.4 jconsole与jvisualvm1.5 优化方向1.6 Nginx动静分离 1 下载JMeter 官网地址&#xff1a;https://jmeter.apache.org/download_jmeter.cgi 运行apache-jmeter-5.6.3\…

HaloDB 的 Oracle 兼容模式

↑ 关注“少安事务所”公众号&#xff0c;欢迎⭐收藏&#xff0c;不错过精彩内容~ 前倾回顾 前面介绍了“光环”数据库的基本情况和安装办法。 哈喽&#xff0c;国产数据库&#xff01;Halo DB! 三步走&#xff0c;Halo DB 安装指引 ★ HaloDB是基于原生PG打造的新一代高性能安…

代码随想录训练营Day 43|力扣343. 整数拆分、96.不同的二叉搜索树

1.整数拆分 代码随想录 视频讲解&#xff1a;动态规划&#xff0c;本题关键在于理解递推公式&#xff01;| LeetCode&#xff1a;343. 整数拆分_哔哩哔哩_bilibili 代码&#xff1a; class Solution { public:int integerBreak(int n) {// dp[i] 拆分数字i所获得的最大乘积为d…

景源畅信:抖音小店如何开橱窗?

在当今数字化时代&#xff0c;社交媒体平台不仅仅是人们交流和分享生活的工具&#xff0c;更成为了商家们展示和销售产品的重要场所。抖音作为一款流行的短视频社交应用&#xff0c;其内置的电商功能——抖音小店&#xff0c;为众多商家和个人提供了便捷的在线销售途径。其中&a…

使用NuScenes数据集生成ROS Bag文件:深度学习与机器人操作的桥梁

在自动驾驶、机器人导航及环境感知的研究中&#xff0c;高质量的数据集是推动算法发展的关键。NuScenes数据集作为一项开源的多模态自动驾驶数据集&#xff0c;提供了丰富的雷达、激光雷达&#xff08;LiDAR&#xff09;、摄像头等多种传感器数据&#xff0c;是进行多传感器融合…

jmeter多用户并发登录教程

有时候为了模拟更真实的场景&#xff0c;在项目中需要多用户登录操作&#xff0c;大致参考如下 jmx脚本&#xff1a;百度网盘链接 提取码&#xff1a;0000 一&#xff1a; 单用户登录 先使用1个用户登录&#xff08;先把1个请求调试通过&#xff09; 发送一个登录请求&…

贪心(临项交换)+01背包,蓝桥云课 搬砖

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 0搬砖 - 蓝桥云课 (lanqiao.cn) 二、解题报告 1、思路分析 将物品按照w[i] v[i]升序排序然后跑01背包就是答案 下面证明&#xff1a;&#xff08;不要问怎么想到的&#xff0c;做题多了就能想到&#xff…

AVB协议分析(一) FQTSS协议介绍

FQTSS协议介绍 一、AVB整体架构二、概述三、协议作用及作用对象四、协议的实现五、参考文献&#xff1a; 一、AVB整体架构 可见FQTSS位于MAC层的上面&#xff0c;代码看不懂&#xff0c;咱们就从最底层开始&#xff0c;逐层分析协议&#xff0c;逐个击破&#xff0c;慢就是快。…

基于GO 写的一款 GUI 工具,M3u8视频下载播放器-飞鸟视频助手

M3u8视频下载播放器-飞鸟视频助手 M3u8视频飞鸟视频助手使用m3u8下载m3u8 本地播放 软件下载地址m3u8嗅探 M3u8视频 M3u8视频格式是为网络视频播放设计&#xff0c;视频网站多数采用 m3u8格式。如腾讯&#xff0c;爱奇艺等网站。 m3u8和 mp4的区别&#xff1a; 一个 mp4是一个…

【PB案例学习笔记】-12秒表实现

写在前面 这是PB案例学习笔记系列文章的第11篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

【2.文件和目录相关(下)】

一、查看文件内容命令 1、cat 文件名&#xff1a;用于显示文件内容&#xff0c;比如 cat test.c。 &#xff08;1&#xff09;cat -b test.c 表示加行号显示文件内容。 &#xff08;2&#xff09;cat -s test.c 表示多个空行合并成一个空行显示。 2、nl 文件名&#xff1a;…

2024 京麟ctf -MazeCodeV1

文章目录 检查代码思路一个字节的指令注意附上S1uM4i佬们的exp https://www.ctfiot.com/184181.html 检查 代码 __int64 __fastcall check_solve(char *a1) {__int64 result; // rax__int64 v2; // rax__int64 index_step; // rax__int64 v4; // rax__int64 v5; // rax__int64…

MVC架构中的servlet层重定向404小坑

servlet层中的UserLoginServlet.java package com.mhys.servlet; /*** ClassName: ${NAME}* Description:** Author 数开_11* Create 2024-05-29 20:32* Version 1.0*/import com.mhys.pojo.User; import com.mhys.service.UserService; import com.mhys.service.impl.UserSer…

MySQL之创建高性能的索引(六)

创建高性能的索引 选择合适的索引列顺序 当使用前缀索引的时候&#xff0c;在某些条件值的基数比正常值高的时候&#xff0c;问题就来了。例如&#xff0c;在某些应用程序中&#xff0c;对于没有登录的用户&#xff0c;都将其用户名记录为"guest"&#xff0c;在记录…

基于python flask的旅游数据大屏实现,有爬虫有数据库

背景 随着旅游行业的快速发展&#xff0c;数据在旅游决策和规划中的重要性日益凸显。基于 Python Flask 的旅游数据大屏实现研究旨在结合爬虫技术和数据库存储&#xff0c;为用户提供全面、实时的旅游信息展示平台。 爬虫技术作为数据采集的重要手段&#xff0c;能够从各种网…