斯坦福2024人工智能指数报告 2

《人工智能指数报告》由斯坦福大学、AI指数指导委员会及业内众多大佬Raymond Perrault、Erik Brynjolfsson 、James Manyika、Jack Clark等人员和组织合著,旨在追踪、整理、提炼并可视化与人工智能(AI)相关各类数据,该报告已被大多数媒体及机构公认为最权威、最具信誉的人工智能数据与洞察来源之一。2024年版《人工智能指数报告》是迄今为止最为详尽的一份报告,包含了前所未有的大量原创数据。

报告一共分为九个章节,一共502页,后续请关注“鲁班模锤“一起深入探究。章节回目如下:

第一章节:研究与发展

基础模型

工业界整体而言继续主导前沿人工智能研究。2023年,工业界发布了51个机器学习模型,而学术界只贡献了15个。2023年产学研合作创历史新高,发布21个著名模型。如今,创建前沿AI模型需要大量的数据、计算能力和资金资源,这些都是学术界所不具备的。例如,GPT-4大概花费了7800万美元,而Google的Gemini大概花费了1.9亿美元。

2023年,总共发布了149个基础模型,是2022年发布数量的两倍多。在这些新发布的模型中,65.7%是开源的,而2022年和2021年分别只有44.4%和33.3%。近年来,基础模型的数量急剧上升,自2022年以来翻了一番多,自2019年以来增长了近38倍。在2023年发布的149个基础模型中,98个为开放访问。

开源的基础模型,谷歌推出了最多的模型(18个),其次是Meta(11个)和微软(9个)。在2023年发布基础模型最多的学术机构是加州大学伯克利分校(3个)。

2023年,世界上大多数基础模型来自美国(109个),其次是中国(20个)和英国。自2019年以来,美国一直保持着主导地位。

算力与成本

根据人工智能指数的估计,最先进的人工智能模型的培训成本已经达到了前所未有的水平。AI指数的估计证实了近年来模型训练成本显著增加的猜测。例如,2017年,引入了支撑几乎所有现代LLM架构的原始Transformer模型,其训练成本约为900美元。2019年发布的RoBERTa Large在许多经典理解基准测试(如SQuAD和GLUE)上取得了最先进的成果,其训练成本约为16万美元。快进到2023年,OpenAI的GPT-4和Google的Gemini Ultra的训练成本分别约为7800万美元和1.91亿美元。

自 2012 年以来著名机器学习模型的训练计算。例如较早的AlexNet需要 470 PFLOP 进行训练。2017年发布的Transformer需要大约 7,400PFLOP。谷歌的 Gemini Ultra是目前最先进的基础模型之一,所需算力直接到达500亿 PFLOP。

专利

从2021年到2022年,全球人工智能专利授权增加大幅上升62.7%。自2010年以来,获得授权的人工智能专利数量增长了31倍以上。中国在AI专利领域占据主导地位。

开源技术

自2011年起,GitHub上与AI相关的项目数量持续增长,从2011年的845个增至2023年的约180万个。尤为显著的2023,GitHub人工智能项目的总数就急剧增长了59.3%。

2023 年,美国在获得 GitHub 星星数量最多的国家中处于领先地位,总数为 1050 万。所有主要地理区域,包括欧盟和英国、中国和印度,授予其所在国家/地区的项目的 GitHub 星级总数均同比增加。

截至 2023 年,GitHub AI项目主要来至美国,印度为第二大贡献者。值得深究的是自2016 年以来,来自美国的项目比例一直在稳步下降。

图书出版

2010年至2022年间,人工智能出版物总量几乎翻了两番,从2010年的约8.8万篇增至2022年的超过24万篇。大部分的出版主题围绕着机器学习,依托杂志,用于教学培训。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/17267.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux部署rustdesk

1.拉取RustDesk镜像 sudo docker image pull rustdesk/rustdesk-server2.启动hbbs服务 sudo docker run --name hbbs -p 21115:21115 -p 21116:21116 -p 21116:21116/udp -p 21118:21118 -v pwd:/root -td --nethost rustdesk/rustdesk-server hbbs3.启动hbbr服务 sudo dock…

spring boot 之 结合aop整合日志

AOP 该切面仅用于请求日志记录&#xff0c;若有其他需求&#xff0c;在此基础上扩展即可&#xff0c;不多逼逼&#xff0c;直接上代码。 引入切面依赖 <!-- 切面 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>sp…

【C++】set与map

目录 一、键值对 二、set 1. set的模板参数列表 2. set的构造 3. set的迭代器 4. set的容量 5. set的修改 6. set的查找 三、map 1. map的模板参数列表 2. map的构造 3. map的迭代器 4. map的容量 5. map的修改 6. map的查找 一、键值对 用来表示具有一一对应关…

SARscape5.7已经支持3米陆探一号(LT-1)数据处理

SARsacpe5.6.2.1版本已经开始支持LT-1的数据处理&#xff0c;由于当时只获取了12米的条带模式2&#xff08;STRIP2&#xff09;例子数据&#xff0c;对3米条带模式1&#xff08;STRIP1&#xff09;数据的InSAR处理轨道误差挺大&#xff0c;可能会造成干涉图异常。 SARsacpe5.7最…

三十篇:动脉脉搏:企业业务处理系统的生命力

动脉脉搏&#xff1a;企业业务处理系统的生命力 1. 引言 在数字经济的浪潮下&#xff0c;企业之间的竞争已不仅仅是产品和服务的竞争&#xff0c;更是信息处理能力的竞争。业务处理系统&#xff08;Transaction Processing System, TPS&#xff09;是企业信息系统架构的基础&a…

Python3 笔记:Python之禅

打开Python Shell&#xff0c;输入import this&#xff0c;按回车键运行程序。 Beautiful is better than ugly. 优雅胜于丑陋。 Explicit is better than implicit. 明确胜于含糊。 Simple is better than complex. 简单胜于复杂。

图形学初识--纹理采样和Wrap方式

文章目录 前言正文1、为什么需要纹理采样&#xff1f;2、什么是纹理采样&#xff1f;3、如何进行纹理采样&#xff1f;&#xff08;1&#xff09;假设绘制区域为矩形&#xff08;2&#xff09;假设绘制区域为三角形 4、什么是纹理的Wrap方式&#xff1f;5、有哪些纹理的Wrap方式…

洪师傅代驾系统开发 支持公众号H5小程序APP 后端Java源码

代驾流程图 业务流程图 管理端设置 1、首页装修 2、师傅奖励配置 师傅注册后,可享受后台设置的新师傅可得的额外奖励; 例:A注册了师傅,新人奖励可享受3天,第一天的第一笔订单完成后可得正常佣金佣金*奖励比例 完成第二笔/第三笔后依次可得正常佣金佣金*奖励比例 完成的第四…

牛客NC166 连续子数组的最大和(二)【中等 前缀和数组+动态规划 Java/Go/PHP/C++】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/11662ff51a714bbd8de809a89c481e21 思路 前缀和数组动态规划Java代码 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#xff0c;直接返回方法规…

小短片创作-优化场景并输出短片(二)

1、什么是潮湿感 什么是潮湿感&#xff1a;基础颜色变化粗糙度变化表面渗入性 1.基础颜色变化&#xff1a;潮湿的地方颜色会变深 2.粗糙度变化&#xff1a;镜面粗糙度为0&#xff0c;潮湿的地方粗糙度会变低 3.表面渗入性&#xff1a;主要看材质是否防水 2、调整场景材质增…

YOLOv8+PyQt5鸟类检测系统完整资源集合(yolov8模型,从图像、视频和摄像头三种路径识别检测,包含登陆页面、注册页面和检测页面)

资源包含可视化的鸟类检测系统&#xff0c;基于最新的YOLOv8训练的鸟类检测模型&#xff0c;和基于PyQt5制作的可视化鸟类检测系统&#xff0c;包含登陆页面、注册页面和检测页面&#xff0c;该系统可自动检测和识别图片或视频当中出现的各种鸟类&#xff0c;以及自动开启摄像头…

Linux汉化Jupyter Notebook

要在Linux系统中使Jupyter Notebook汉化&#xff0c;可以通过安装jupyterlab-language-pack-zh-CN扩展来实现。以下是具体步骤和示例代码&#xff1a; 打开终端。 执行以下命令以安装Jupyter Notebook的中文语言包&#xff1a; pip install jupyterlab-language-pack-zh-CN …

【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片

【CSharp】将ushort数组保存为1通道位深16bit的Tiff图片 1.背景2.接口 1.背景 System.Drawing.Common 是一个用于图像处理和图形操作的库&#xff0c;它是 System.Drawing 命名空间的一部分。由于 .NET Core 和 .NET 5 的跨平台特性&#xff0c;许多以前内置于 .NET Framework…

微信小程序上传包过大的最全解决方案!

微信小程序的发布大小限制是2MB。然而一个程序怎么能这么小&#xff1f; 介绍一下项目中的经验。 新项目 如果是刚开始做的新项目&#xff0c;一定确定好自己要用的Ui框架&#xff0c;而且确定之后&#xff0c;千万不要引入别的&#xff0c;否则占大小&#xff01;&#xff0…

HNCTF

HNCTF 文章目录 HNCTFBabyPQEZmathez_Classicf(?*?)MatrixRSABabyAESIs this Iso? BabyPQ nc签到题&#xff0c;跟端口连接拿到n和phin n 8336450100232098099043686671148282601664696810002345240872579498695511770993195704402414029892029461830476866385453475141207…

【开源】加油站管理系统 JAVA+Vue.js+SpringBoot+MySQL

目录 一、项目介绍 论坛模块 加油站模块 汽油模块 二、项目截图 三、核心代码 一、项目介绍 Vue.jsSpringBoot前后端分离新手入门项目《加油站管理系统》&#xff0c;包括论坛模块、加油站模块、汽油模块、加油模块和部门角色菜单模块&#xff0c;项目编号T003。 【开源…

矩阵对角化在机器学习中的奥秘与应用

在机器学习的广阔领域中&#xff0c;矩阵对角化作为一种重要的数学工具&#xff0c;扮演着不可或缺的角色。从基础的线性代数理论到复杂的机器学习算法&#xff0c;矩阵对角化都在其中发挥着重要的作用。 矩阵对角化的概念与原理 矩阵对角化是矩阵理论中的一个基本概念&#x…

综合布线管理软件有何作用?

当客户问及“综合布线管理软件究竟有何作用&#xff1f;” 我们通常这样回答&#xff1a; 综合布线管理软件&#xff0c;作为运维管理的得力助手&#xff0c;其核心功能旨在确保布线系统的稳定运行与快速响应。 首先&#xff0c;这款软件通过构建标准化的运维管理流程&#…

四川汇聚荣科技有限公司好不好?

在当今科技飞速发展的时代&#xff0c;企业要想在激烈的市场竞争中脱颖而出&#xff0c;不仅需要先进的技术支持&#xff0c;还需要优质的服务和良好的口碑。那么&#xff0c;四川汇聚荣科技有限公司是否具备这些条件呢?接下来&#xff0c;我们将从公司实力、服务质量、客户反…

如何根据系统的业务场景需求定制自己的线程池?

如何根据系统的业务场景需求定制自己的线程池? 1、背景2、生产中应当如何使用线程池才比较合理呢?2.1、指定线程数量2.2、选择合适的工作队列2.3、自定义线程工厂2.4、选择合适的拒绝策略3、自定义线程池代码案例1、背景 线程池有那么多的参数和类型,在实际的开发中,我们应…