Matlab图像中加入脉冲噪声、高斯噪声并用均值滤波、中值滤波进行滤波处理

一、脉冲噪声和高斯噪声简介 

脉冲噪声和高斯噪声是两种常见的信号干扰类型,它们的特性和影响各不相同:

脉冲噪声(Impulse Noise):

  • 在图像中,脉冲噪声表现为随机出现的亮点或暗点,这些噪声点通常与周围像素明显不同。脉冲噪声也被称为椒盐噪声,因其外观类似于图像上撒了黑椒和食盐。
  • 这种噪声可能由图像传感器、传输错误或其他电子干扰引起。
  • 处理脉冲噪声通常使用中值滤波器等非线性滤波技术,这些技术能有效去除这些孤立的噪声点而不过度模糊图像。

高斯噪声(Gaussian Noise)

  • 高斯噪声在图像中表现为在整个图像上加上了一层随机的灰度变化,使图像看起来更“粗糙”。
  • 这种噪声的幅度在像素间呈正态分布,影响是全局性和一致的。
  • 高斯噪声的来源可能包括传感器噪声、环境光的波动或电路的热噪声。
  • 减少高斯噪声通常采用高斯滤波、双边滤波等线性或非线性滤波技术。

二、均值滤波和中值滤波简介

均值滤波(Mean Filtering)

  • 原理:均值滤波是一种线性滤波技术,通过对图像中每个像素的邻域内的像素值求平均,来计算该像素的新值。
  • 效果:这种滤波器可以有效地去除图像中的随机噪声,但缺点是它也会使图像边缘模糊,因为它不区分边缘和噪声,统一进行平均处理。
  • 应用:适用于去除随机噪声,尤其是高斯噪声,但不适合处理具有锐利边缘或细节要求较高的图像。

中值滤波(Median Filtering)

  • 原理:中值滤波是一种非线性滤波技术,它通过将图像中每个像素的邻域内的像素值进行排序,并取中间值作为该像素的新值。
  • 效果:中值滤波特别有效于去除脉冲噪声(如椒盐噪声),同时能较好地保持图像边缘的清晰度。这是因为中值滤波只是替换极端值,而不改变邻域内其他像素的值。
  • 应用:广泛用于去除椒盐噪声和其他类型的极端值噪声。由于其保边缘的特性,中值滤波在医学图像处理和实时视频处理中非常有用。

三、代码

img = imread("E:/桌面/图.jpg"); % 读取图像
img_gray = rgb2gray(img); % 转换为灰度图像
% 1. 添加脉冲噪声并使用均值滤波进行处理
img_noise = imnoise(img_gray, 'salt & pepper', 0.05); % 添加脉冲噪声
img_denoised_mean = filter2(fspecial('average', 3), img_noise); % 使用均值滤波进行去噪处理figure;
subplot(2,2,1), imshow(img), title('原彩色图');
subplot(2,2,2), imshow(img_gray), title('灰度图');
subplot(2,2,3), imshow(img_noise), title('加入脉冲噪声的图像');
subplot(2,2,4), imshow(uint8(img_denoised_mean)), title('均值滤波去噪后的图像');% 2. 添加脉冲噪声并使用中值滤波进行处理
img_noise = imnoise(img_gray, 'salt & pepper', 0.05); % 添加脉冲噪声
img_denoised_median = medfilt2(img_noise); % 使用中值滤波进行去噪处理figure;
subplot(2,2,1), imshow(img), title('原彩色图');
subplot(2,2,2), imshow(img_gray), title('灰度图');
subplot(2,2,3), imshow(img_noise), title('加入脉冲噪声的图像');
subplot(2,2,4), imshow(img_denoised_median), title('中值滤波去噪后的图像');% 3. 添加高斯噪声并使用均值滤波进行处理
img_noise = imnoise(img_gray, 'gaussian', 0, 0.02); % 添加高斯噪声
img_denoised_mean = filter2(fspecial('average', 3), img_noise); % 使用均值滤波进行去噪处理figure;
subplot(2,2,1), imshow(img), title('原彩色图');
subplot(2,2,2), imshow(img_gray), title('灰度图');
subplot(2,2,3), imshow(img_noise), title('加入高斯噪声的图像');
subplot(2,2,4), imshow(uint8(img_denoised_mean)), title('均值滤波去噪后的图像');% 4. 添加高斯噪声并使用中值滤波进行处理
img_noise = imnoise(img_gray, 'gaussian', 0, 0.02); % 添加高斯噪声
img_denoised_median = medfilt2(img_noise); % 使用中值滤波进行去噪处理figure;
subplot(2,2,1), imshow(img), title('原彩色图');
subplot(2,2,2), imshow(img_gray), title('灰度图');
subplot(2,2,3), imshow(img_noise), title('加入高斯噪声的图像');
subplot(2,2,4), imshow(img_denoised_median), title('中值滤波去噪后的图像');

四、效果图

1.脉冲噪声+均值滤波

在原始灰度图像上添加了脉冲噪声,使得图像中出现了黑白相间的明显点状噪声。使用均值滤波处理后,图像的噪声显著减少,但在去噪的同时,图像细节有所损失,导致图像变得模糊。

2.脉冲噪声+中值滤波

在原始灰度图像上添加了脉冲噪声,使得图像中出现了黑白相间的明显点状噪声。使用中值滤波后的图像,相比于均值滤波,在去除噪声的同时保留了图像的边缘和细节信息,因此得到的图像更清晰,噪声点也被有效地去除。

3.高斯噪声+均值滤波

在原始灰度图像上添加了高斯噪声,图像整体变得模糊,但不像脉冲噪声那样明显。使用均值滤波处理后,能够减少高斯噪声的影响,但在去噪的同时,图像细节有所损失,导致图像变得模糊。

4.高斯噪声+中值滤波

在原始灰度图像上添加了高斯噪声,图像整体变得模糊,但不像脉冲噪声那样明显。使用中值滤波后的图像,相比于均值滤波,在去除噪声的同时保留了图像的边缘和细节信息,因此得到的图像更清晰,噪声点也被有效地去除。

注:有任何问题欢迎评论区交流讨论或者私信!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vector介绍与使用【C++】

C vector 前言一、vector的介绍c文档介绍简介 二、vector的定义和使用vector的定义vector代码演示 vector的使用vector iterator 的使用vector 空间增长问题vector 增删查改vector 迭代器失效问题引起底层空间改变eraseg与vs检测比较string迭代器失效 vector 在OJ中的使用只出现…

pandas 预处理

文章目录 第1关:数据读取与合并第2关:数据清洗第3关:数据转换 第1关:数据读取与合并 任务描述 本关任务:加载 csv 数据集,实现 DataFrame 合并。 知识讲解 Pandas 模块导入 import pandas as pd 读取 cs…

物流EDI:GEFCO EDI 需求分析

GEFCO专注于汽车物流领域近70年,是欧洲整车市场的物流供应商,也是欧洲十大领先的运输和物流集团之一。GEFCO的业务遍及六大洲,业务覆盖150个国家,在全球拥有庞大的员工队伍,在全球汽车行业的挑战中茁壮成长。为汽车制造…

WordPress插件:链接自动识别转为超链接

WordPress插件&#xff1a;链接自动识别转为超链接 <?phpfunction open_links_in_new_tab() {add_filter(the_content, make_clickable);function autoblank($text) {$return str_replace(<a, <a target"_blank", $text);return $return;}add_filter(th…

[Scrcpy]数据线连接安卓手机投屏windows电脑[win控制安卓手机]比Samsung Dex好用

配置好&#xff0c;只需要两步即可完成安卓手机投屏windows 第一步&#xff1a;usb线连接windows电脑 第二步&#xff1a;cmd输入投屏命令srccpy 搞定 前言/背景 一些视频资料只能下载到手机&#xff0c;很不喜欢手机那么小屏幕播放&#xff0c;播放很不方便 在家的话可以投…

如何看待2024数维杯?

一、赛事介绍 美赛结束后,2024年又一场高含金量数模竞赛开始报名啦!数维杯每年上半年为数维杯国赛(5月,俗称小国赛),下半年为数维杯国际赛(11月),累计参赛高校千余所,参赛人数超14万人,经过八年多的发展,已成为继数学建模国赛和美赛之后的第三大全国性数学建模赛事,…

phpstudy靶场访问显示404 Not Found

涉及靶场 upload-labd sqli-labs pikachu dvwa 以及所有部署在phpstudy中的靶场 一、检查phpstduy设置 localhost——管理——修改 1、根目录&#xff08;默认设置&#xff0c;不要改&#xff09; localhost这个域名必须保留&#xff0c;并且把根目录设置为phpstudy的WWW文…

CSS-背景属性

目录 背景属性 background-color (背景颜色 ) background-image (背景图片 ) background-repeat (背景图平铺方式 ) no-repeat 不平铺 repeat-x 水平方向平铺 repeat-y 垂直方向平铺 repeat 平铺 background-position (背景图位置) background-size (背景缩…

第80天:WAF 攻防-漏洞利用HPP 污染分块传输垃圾数据

案例一&#xff1a;安全狗-SQL 注入-知识点 正常访问会被拦截 like绕过 对比成功&#xff0c;正常返回 对比失败&#xff0c;不返回 post绕过 这里需要支持post注入。这里是我自己改的REQUEST 这里其实安全狗可以开启post验证&#xff0c;看别人知不知道能开启了 过滤了 模拟…

如何备考PMP才能一次通过?

PMP备考一个月就能通过&#xff0c;培训机构中就应该这么学&#xff01; PMP考试的难度其实并没有大家想象中的那么大&#xff0c;现在培训机构的通过率基本也在90%以上&#xff0c;而这90%以上也基本都是头一次参加考试很少有参加重考的学员。我就是在威班PMP培训了一个多月一…

如何使用低代码快速创建一个复杂交叉报表?

前言 在当今数字化时代&#xff0c;数据是企业决策和发展的重要支柱。为了更好地理解和利用数据&#xff0c;生成清晰、全面的报表至关重要。而复杂交叉报表作为一种高级数据分析工具&#xff0c;能够帮助企业深入挖掘数据背后的价值&#xff0c;提供全面的数据概览和分析结果…

联发科技发布天玑9300+旗舰5G生成式AI芯片 | 最新快讯

5 月 7 日消息&#xff0c;联发科技今天举办了天玑开发者大会 2024。大会上&#xff0c;联发科技开启了“天玑 AI 先锋计划”&#xff0c;联合业界生态企业发布了《生成式 AI 手机产业白皮书》&#xff0c;分享了生成式 AI 端侧部署的解决方案“天玑 AI 开发套件”。同时&#…

大数据技术原理与技术简答

1、HDFS中名称节点的启动过程 名称节点在启动时&#xff0c;会将FsImage 的内容加载到内存当中&#xff0c;此时fsimage是上上次关机时的状态。然后执行 EditLog 文件中的各项操作&#xff0c;使内存中的元数据保持最新。接着创建一个新的FsImage 文件和一个空的 Editlog 文件…

华为WATCH 4 系列,智慧体验新升级

一表在手&#xff0c;探索无限。华为 WATCH 4 系列支持弦月窗提醒&#xff0c;重要信息抬腕即见&#xff1b;听歌、导航、支付、刷门禁、控车……腕上轻松掌握&#xff0c;出行更高效。

西奥CHT-01软胶囊硬度测试仪:重塑行业标杆,引领硬度测试新纪元

西奥CHT-01软胶囊硬度测试仪&#xff1a;重塑行业标杆&#xff0c;引领硬度测试新纪元 在当今医药领域&#xff0c;软胶囊作为一种广泛应用的药品剂型&#xff0c;其品质的稳定性和安全性直接关系到患者的健康。而在确保软胶囊品质的各项指标中&#xff0c;硬度测试尤为关键。…

[oeasy]python0016_在vim中直接运行python程序

回忆上次内容 上次 置换 esc 和 caps lock 任何操作 都可以在不移动 手腕的状态下完成了 每次都要 退出vim编辑器&#x1f634; 才能 在shell中 运行python程序有点麻烦 想要 不退出vim 直接在 vim应用 中运行 py程序可能吗&#xff1f;&#x1f914; 运行程序 以前都是 先退…

Unity 性能优化之UI和模型优化(九)

提示&#xff1a;仅供参考&#xff0c;有误之处&#xff0c;麻烦大佬指出&#xff0c;不胜感激&#xff01; 文章目录 前言一、选择UI二、UGUI的优化1.Raycast Target2.UI控件的重叠3.TextMeshPro 二、模型优化1.Model选项卡Mesh CompressionRead/Write Enabled设置Optimize Ga…

【python数据分析基础】—pandas透视表和交叉表

目录 前言一、pivot_table 透视表二、crosstab 交叉表三、实际应用 前言 透视表是excel和其他数据分析软件中一种常见的数据汇总工具。它是根据一个或多个键对数据进行聚合&#xff0c;并根据行和列上的分组键将数据分配到各个矩形区域中。 一、pivot_table 透视表 pivot_tabl…

【MySQL】MySQL基本知识点

目录 1.SQL分类&#xff1a; 2.DDL-数据库操作 3.DDL-表操作-创建 4.DDL-表操作-查询 5.DDL-表操作-数据类型 6.DDL-表操作-修改 1.SQL分类&#xff1a; 2.DDL-数据库操作 3.DDL-表操作-创建 注意&#xff1a;里面的符号全部要切换为英文状态 4.DDL-表操作-查询 5.DDL…

车路云一体化简介

车路云一体化 车路云一体化融合控制系统&#xff08; System of Coordinated Control by Vehicle-Road-Cloud Integration&#xff0c;SCCVRCI&#xff09;&#xff0c;是利用新一代信息与通信技术&#xff0c; 将人、车、路、云的物理层、信息层、应用层连为一体&#xff0c;…