vector介绍与使用【C++】

C++ vector

  • 前言
  • 一、vector的介绍
    • c++文档介绍
    • 简介
  • 二、vector的定义和使用
    • vector的定义
      • vector代码演示
    • vector的使用
      • vector iterator 的使用
      • vector 空间增长问题
      • vector 增删查改
      • vector 迭代器失效问题
        • 引起底层空间改变
        • erase
        • g++与vs检测比较
        • string迭代器失效
      • vector 在OJ中的使用
        • 只出现一次的数字
        • 杨辉三角
        • 练习题
  • 三、vector深度剖析及模拟实现
    • std::vector的核心框架接口的模拟实现bit::vector
    • 使用memcpy拷贝问题
        • 问题分析
    • 动态二维数组理解


前言

C++中的vector是一个动态数组,它可以根据需要自动调整大小。它存储在连续的内存块中,提供了快速的随机访问和插入操作,但删除操作可能导致内存的移动。vector是STL(标准模板库)的一部分,可以容纳任何类型的元素,包括内置类型和用户定义的类型。使用vector时,需要包含头文件,并通过std命名空间访问。vector还提供了许多成员函数,如push_back()pop_back()size()等,以支持各种操作。


一、vector的介绍

c++文档介绍

c++文档

简介

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起listforward_list统一的迭代器和引用更好。

二、vector的定义和使用

vector学习时一定要学会查看文档,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。

c++文档

vector的定义

(constructor)构造函数声明接口说明
vector()(重点)无参构造
vectorsize_type n, const value_type& val = value_type()构造并初始化n个val
vector (const vector& x);(重点) 拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造

vector代码演示

#define _CRT_SECURE_NO_WARNINGS#include <iostream>
using namespace std;
#include <vector>
//    vector的构造

int TestVector1()
{// constructors used in the same order as described above:vector<int> first;                                // empty vector of intsvector<int> second(4, 100);                       // four ints with value 100vector<int> third(second.begin(), second.end());  // iterating through secondvector<int> fourth(third);                       // a copy of third// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分// the iterator constructor can also be used to construct from arrays:int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}
//  vector的迭代器

void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}void TestVector2()
{// 使用push_back插入4个数据vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);// 使用迭代器进行遍历打印vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;// 使用迭代器进行修改it = v.begin();while (it != v.end()){*it *= 2;++it;}// 使用反向迭代器进行遍历再打印// vector<int>::reverse_iterator rit = v.rbegin();auto rit = v.rbegin();while (rit != v.rend()){cout << *rit << " ";++rit;}cout << endl;PrintVector(v);
}
//  vector的resize 和 reserve

// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{vector<int> v;// set some initial content:for (int i = 1; i < 10; i++)v.push_back(i);v.resize(5);v.resize(8, 100);v.resize(12);cout << "v contains:";for (size_t i = 0; i < v.size(); i++)cout << ' ' << v[i];cout << '\n';
}// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()) {sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
//  vector的增删改查

// 尾插和尾删:push_back/pop_back
void TestVector4()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);auto it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;v.pop_back();v.pop_back();it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
}// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{// 使用列表方式初始化,C++11新语法vector<int> v{ 1, 2, 3, 4 };// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入// 1. 先使用find查找3所在位置// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局findauto pos = find(v.begin(), v.end(), 3);if (pos != v.end()){// 2. 在pos位置之前插入30v.insert(pos, 30);}vector<int>::iterator it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据v.erase(pos);it = v.begin();while (it != v.end()) {cout << *it << " ";++it;}cout << endl;
}// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{vector<int> v{ 1, 2, 3, 4 };// 通过[]读写第0个位置。v[0] = 10;cout << v[0] << endl;// 1. 使用for+[]小标方式遍历for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;vector<int> swapv;swapv.swap(v);cout << "v data:";for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;// 2. 使用迭代器遍历cout << "swapv data:";auto it = swapv.begin();while (it != swapv.end()){cout << *it << " ";++it;}// 3. 使用范围for遍历for (auto x : v)cout << x << " ";cout << endl;
}

vector的使用

vector iterator 的使用

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

在这里插入图片描述
在这里插入图片描述

vector 空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vectorsize
reserve (重点)改变vectorcapacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size
// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()) {sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

vector 增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insertposition之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[] (重点)像数组一样访问

vector 迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:

引起底层空间改变

会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resizereserveinsertassignpush_back等。

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}
erase

指定位置元素的删除操作–erase

#include <iostream>
using namespace std;
#include <vector>int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
}int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}
g++与vs检测比较

Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{1,2,3,4,5};for(size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序输出:
1 2 3 4 5 
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>int main()
{vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序可以正常运行,并打印:
4
4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
}========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5 
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp 
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在beginend范围内,肯定会崩溃的。

string迭代器失效

vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

#include <string>
void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it); ++it;}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可

vector 在OJ中的使用

只出现一次的数字

只出现一次的数字

class Solution {
public:int singleNumber(vector<int>& nums) {int value = 0;for(auto e : v) {value ^= e; }return value;}
};
杨辉三角

杨辉三角

// 涉及resize / operator[]
// 核心思想:找出杨辉三角的规律,发现每一行头尾都是1,中间第[j]个数等于上一行[j-1]+[j]
class Solution {
public:vector<vector<int>> generate(int numRows) {vector<vector<int>> vv(numRows);for(int i = 0; i < numRows; ++i){vv[i].resize(i+1, 1);}for(int i = 2; i < numRows; ++i){for(int j = 1; j < i; ++j){vv[i][j] = vv[i-1][j] + vv[i-1][j-1];}}return vv;}
};

总结:通过上面的练习我们发现vector常用的接口更多是插入和遍历。遍历更喜欢用数组operator[i]的形式访问,因为这样便捷。

练习题

删除有序数组中的重复项

只出现一次的数字 II

只出现一次的数字 III

数组中出现次数超过一半的数字

电话号码的字母组合

三、vector深度剖析及模拟实现

在这里插入图片描述
在这里插入图片描述

std::vector的核心框架接口的模拟实现bit::vector

#pragma once#include <iostream>
using namespace std;
#include <assert.h>// 注意这里namespace大家下去就不要取名为bit了,否则被面试官看到问bit是啥就尴尬了
namespace bit
{template<class T>class vector{public:// Vector的迭代器是一个原生指针typedef T* iterator;typedef const T* const_iterator;///// 构造和销毁vector(): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){}vector(size_t n, const T& value = T()): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){reserve(n);while (n--){push_back(value);}}/** 理论上将,提供了vector(size_t n, const T& value = T())之后* vector(int n, const T& value = T())就不需要提供了,但是对于:* vector<int> v(10, 5);* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型* 就不会走vector(size_t n, const T& value = T())这个构造方法,* 最终选择的是:vector(InputIterator first, InputIterator last)* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int* 但是10和5根本不是一个区间,编译时就报错了* 故需要增加该构造方法*/vector(int n, const T& value = T()): _start(new T[n]), _finish(_start+n), _endOfStorage(_finish){for (int i = 0; i < n; ++i){_start[i] = value;}}// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器template<class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}vector(const vector<T>& v): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){reserve(v.capacity());iterator it = begin();const_iterator vit = v.cbegin();while (vit != v.cend()){*it++ = *vit++;}_finish = it;}vector<T>& operator=(vector<T> v){swap(v);return *this;}~vector(){if (_start){delete[] _start;_start = _finish = _endOfStorage = nullptr;}}/// 迭代器相关iterator begin(){return _start;}iterator end(){return _finish;}const_iterator cbegin() const{return _start;}const_iterator cend() const{return _finish;}//// 容量相关size_t size() const { return _finish - _start; }size_t capacity() const { return _endOfStorage - _start; }bool empty() const { return _start == _finish; }void reserve(size_t n){if (n > capacity()){size_t oldSize = size();// 1. 开辟新空间T* tmp = new T[n];// 2. 拷贝元素// 这里直接使用memcpy会有问题吗?同学们思考下//if (_start)//	memcpy(tmp, _start, sizeof(T)*size);if (_start){for (size_t i = 0; i < oldSize; ++i)tmp[i] = _start[i];// 3. 释放旧空间delete[] _start;}_start = tmp;_finish = _start + oldSize;_endOfStorage = _start + n;}}void resize(size_t n, const T& value = T()){// 1.如果n小于当前的size,则数据个数缩小到nif (n <= size()){_finish = _start + n;return;}// 2.空间不够则增容if (n > capacity())reserve(n);// 3.将size扩大到niterator it = _finish;_finish = _start + n;while (it != _finish){*it = value;++it;}}///// 元素访问T& operator[](size_t pos) { assert(pos < size());return _start[pos]; }const T& operator[](size_t pos)const { assert(pos < size());return _start[pos]; }T& front(){return *_start;}const T& front()const{return *_start;}T& back(){return *(_finish - 1);}const T& back()const{return *(_finish - 1);}/// vector的修改操作void push_back(const T& x) { insert(end(), x); }void pop_back() { erase(end() - 1); }void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endOfStorage, v._endOfStorage);}iterator insert(iterator pos, const T& x){assert(pos <= _finish);// 空间不够先进行增容if (_finish == _endOfStorage){//size_t size = size();size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;reserve(newCapacity);// 如果发生了增容,需要重置pospos = _start + size();}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;return pos;}// 返回删除数据的下一个数据// 方便解决:一边遍历一边删除的迭代器失效问题iterator erase(iterator pos){// 挪动数据进行删除iterator begin = pos + 1;while (begin != _finish) {*(begin - 1) = *begin;++begin;}--_finish;return pos;}private:iterator _start;		// 指向数据块的开始iterator _finish;		// 指向有效数据的尾iterator _endOfStorage;  // 指向存储容量的尾};
}/// /
/// 对模拟实现的vector进行严格测试
void TestBitVector1()
{bit::vector<int> v1;bit::vector<int> v2(10, 5);int array[] = { 1,2,3,4,5 };bit::vector<int> v3(array, array+sizeof(array)/sizeof(array[0]));bit::vector<int> v4(v3);for (size_t i = 0; i < v2.size(); ++i){cout << v2[i] << " ";}cout << endl;auto it = v3.begin();while (it != v3.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v4){cout << e << " ";}cout << endl;
}void TestBitVector2()
{bit::vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);cout << v.size() << endl;cout << v.capacity() << endl;cout << v.front() << endl;cout << v.back() << endl;cout << v[0] << endl;for (auto e : v){cout << e << " ";}cout << endl;v.pop_back();v.pop_back();for (auto e : v){cout << e << " ";}cout << endl;v.insert(v.begin(), 0);for (auto e : v){cout << e << " ";}cout << endl;v.erase(v.begin() + 1);for (auto e : v){cout << e << " ";}cout << endl;
}

使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}
问题分析
  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
  2. 如果拷贝的是内置类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>bit::vector<bit::vector<int>> vv(n);// 将二维数组每一行中的vecotr<int>中的元素全部设置为1for (size_t i = 0; i < n; ++i)vv[i].resize(i + 1, 1);// 给杨慧三角出第一列和对角线的所有元素赋值for (int i = 2; i < n; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}
}

bit::vector<bit::vector<int>> vv(n); 构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:
在这里插入图片描述

vv中元素填充完成之后,如下图所示:
在这里插入图片描述
使用标准库中vector构建动态二维数组时与上图实际是一致的。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pandas 预处理

文章目录 第1关&#xff1a;数据读取与合并第2关&#xff1a;数据清洗第3关&#xff1a;数据转换 第1关&#xff1a;数据读取与合并 任务描述 本关任务&#xff1a;加载 csv 数据集&#xff0c;实现 DataFrame 合并。 知识讲解 Pandas 模块导入 import pandas as pd 读取 cs…

物流EDI:GEFCO EDI 需求分析

GEFCO专注于汽车物流领域近70年&#xff0c;是欧洲整车市场的物流供应商&#xff0c;也是欧洲十大领先的运输和物流集团之一。GEFCO的业务遍及六大洲&#xff0c;业务覆盖150个国家&#xff0c;在全球拥有庞大的员工队伍&#xff0c;在全球汽车行业的挑战中茁壮成长。为汽车制造…

WordPress插件:链接自动识别转为超链接

WordPress插件&#xff1a;链接自动识别转为超链接 <?phpfunction open_links_in_new_tab() {add_filter(the_content, make_clickable);function autoblank($text) {$return str_replace(<a, <a target"_blank", $text);return $return;}add_filter(th…

[Scrcpy]数据线连接安卓手机投屏windows电脑[win控制安卓手机]比Samsung Dex好用

配置好&#xff0c;只需要两步即可完成安卓手机投屏windows 第一步&#xff1a;usb线连接windows电脑 第二步&#xff1a;cmd输入投屏命令srccpy 搞定 前言/背景 一些视频资料只能下载到手机&#xff0c;很不喜欢手机那么小屏幕播放&#xff0c;播放很不方便 在家的话可以投…

如何看待2024数维杯?

一、赛事介绍 美赛结束后,2024年又一场高含金量数模竞赛开始报名啦!数维杯每年上半年为数维杯国赛(5月,俗称小国赛),下半年为数维杯国际赛(11月),累计参赛高校千余所,参赛人数超14万人,经过八年多的发展,已成为继数学建模国赛和美赛之后的第三大全国性数学建模赛事,…

phpstudy靶场访问显示404 Not Found

涉及靶场 upload-labd sqli-labs pikachu dvwa 以及所有部署在phpstudy中的靶场 一、检查phpstduy设置 localhost——管理——修改 1、根目录&#xff08;默认设置&#xff0c;不要改&#xff09; localhost这个域名必须保留&#xff0c;并且把根目录设置为phpstudy的WWW文…

CSS-背景属性

目录 背景属性 background-color (背景颜色 ) background-image (背景图片 ) background-repeat (背景图平铺方式 ) no-repeat 不平铺 repeat-x 水平方向平铺 repeat-y 垂直方向平铺 repeat 平铺 background-position (背景图位置) background-size (背景缩…

第80天:WAF 攻防-漏洞利用HPP 污染分块传输垃圾数据

案例一&#xff1a;安全狗-SQL 注入-知识点 正常访问会被拦截 like绕过 对比成功&#xff0c;正常返回 对比失败&#xff0c;不返回 post绕过 这里需要支持post注入。这里是我自己改的REQUEST 这里其实安全狗可以开启post验证&#xff0c;看别人知不知道能开启了 过滤了 模拟…

如何备考PMP才能一次通过?

PMP备考一个月就能通过&#xff0c;培训机构中就应该这么学&#xff01; PMP考试的难度其实并没有大家想象中的那么大&#xff0c;现在培训机构的通过率基本也在90%以上&#xff0c;而这90%以上也基本都是头一次参加考试很少有参加重考的学员。我就是在威班PMP培训了一个多月一…

如何使用低代码快速创建一个复杂交叉报表?

前言 在当今数字化时代&#xff0c;数据是企业决策和发展的重要支柱。为了更好地理解和利用数据&#xff0c;生成清晰、全面的报表至关重要。而复杂交叉报表作为一种高级数据分析工具&#xff0c;能够帮助企业深入挖掘数据背后的价值&#xff0c;提供全面的数据概览和分析结果…

联发科技发布天玑9300+旗舰5G生成式AI芯片 | 最新快讯

5 月 7 日消息&#xff0c;联发科技今天举办了天玑开发者大会 2024。大会上&#xff0c;联发科技开启了“天玑 AI 先锋计划”&#xff0c;联合业界生态企业发布了《生成式 AI 手机产业白皮书》&#xff0c;分享了生成式 AI 端侧部署的解决方案“天玑 AI 开发套件”。同时&#…

大数据技术原理与技术简答

1、HDFS中名称节点的启动过程 名称节点在启动时&#xff0c;会将FsImage 的内容加载到内存当中&#xff0c;此时fsimage是上上次关机时的状态。然后执行 EditLog 文件中的各项操作&#xff0c;使内存中的元数据保持最新。接着创建一个新的FsImage 文件和一个空的 Editlog 文件…

华为WATCH 4 系列,智慧体验新升级

一表在手&#xff0c;探索无限。华为 WATCH 4 系列支持弦月窗提醒&#xff0c;重要信息抬腕即见&#xff1b;听歌、导航、支付、刷门禁、控车……腕上轻松掌握&#xff0c;出行更高效。

西奥CHT-01软胶囊硬度测试仪:重塑行业标杆,引领硬度测试新纪元

西奥CHT-01软胶囊硬度测试仪&#xff1a;重塑行业标杆&#xff0c;引领硬度测试新纪元 在当今医药领域&#xff0c;软胶囊作为一种广泛应用的药品剂型&#xff0c;其品质的稳定性和安全性直接关系到患者的健康。而在确保软胶囊品质的各项指标中&#xff0c;硬度测试尤为关键。…

[oeasy]python0016_在vim中直接运行python程序

回忆上次内容 上次 置换 esc 和 caps lock 任何操作 都可以在不移动 手腕的状态下完成了 每次都要 退出vim编辑器&#x1f634; 才能 在shell中 运行python程序有点麻烦 想要 不退出vim 直接在 vim应用 中运行 py程序可能吗&#xff1f;&#x1f914; 运行程序 以前都是 先退…

Unity 性能优化之UI和模型优化(九)

提示&#xff1a;仅供参考&#xff0c;有误之处&#xff0c;麻烦大佬指出&#xff0c;不胜感激&#xff01; 文章目录 前言一、选择UI二、UGUI的优化1.Raycast Target2.UI控件的重叠3.TextMeshPro 二、模型优化1.Model选项卡Mesh CompressionRead/Write Enabled设置Optimize Ga…

【python数据分析基础】—pandas透视表和交叉表

目录 前言一、pivot_table 透视表二、crosstab 交叉表三、实际应用 前言 透视表是excel和其他数据分析软件中一种常见的数据汇总工具。它是根据一个或多个键对数据进行聚合&#xff0c;并根据行和列上的分组键将数据分配到各个矩形区域中。 一、pivot_table 透视表 pivot_tabl…

【MySQL】MySQL基本知识点

目录 1.SQL分类&#xff1a; 2.DDL-数据库操作 3.DDL-表操作-创建 4.DDL-表操作-查询 5.DDL-表操作-数据类型 6.DDL-表操作-修改 1.SQL分类&#xff1a; 2.DDL-数据库操作 3.DDL-表操作-创建 注意&#xff1a;里面的符号全部要切换为英文状态 4.DDL-表操作-查询 5.DDL…

车路云一体化简介

车路云一体化 车路云一体化融合控制系统&#xff08; System of Coordinated Control by Vehicle-Road-Cloud Integration&#xff0c;SCCVRCI&#xff09;&#xff0c;是利用新一代信息与通信技术&#xff0c; 将人、车、路、云的物理层、信息层、应用层连为一体&#xff0c;…

Linux网络编程(三)IO复用二 poll系统调用

二、poll系统调用 2.1、API poll系统调用和select类似&#xff0c;也是在指定时间内轮询一定数量的文件描述符&#xff0c;以测试其中是否有就绪者。 #include <poll.h>int poll(struct pollfd* fds, nfds_t nfds, int timeout);fds参数是一个pollfd结构类型的数组&am…