装修设计用什么软件/浙江seo推广

装修设计用什么软件,浙江seo推广,杭州信贷网站制作,做网站最专业的公司有哪些目录 一、什么是MongoDB 二、准备工作 (1)安装MongoDB ​(2)安装pymongo库 三、连接MongoDB 四、指定数据库 五、指定集合 六、插入数据 (1) insert 方法 (2)insert_one(…

 目录

一、什么是MongoDB

二、准备工作

(1)安装MongoDB 

​(2)安装pymongo库  

 三、连接MongoDB

四、指定数据库

 五、指定集合

六、插入数据

(1) insert 方法

(2)insert_one() 和 insert_many() 方法

 七、查询

(1)find_one() 

(2)ObjectId

(3)find()方法

八、计数

九、排序

十、偏移

十一、更新

(1)update()方法

(2)update_one() 方法和 update_many() 方法

十二、删除

(1) remove() 方法        

(2)delete_one() 和 delete_many()

十三、其他操作


在第9讲中我们学会了如何利用pyquery提取数据信息,那么提取得到的数据该如何存放呢??本节介绍的MongoDB就是一种既方便存储又方便检索的存储方式

一、什么是MongoDB

在这一节中,我们就来看看 Python 3 下 MongoDB 的存储操作。  

二、准备工作

(1)安装MongoDB 

        在开始之前,请确保已经安装好了 MongoDB 并启动了其服务

        安装以及启动方式参考:

Windows(超详细保姆级教学)安装mongodb数据库_mongodb windows安装-CSDN博客

windows环境下启动mongodb服务_windows非正常关机导致mongodb服务手动才能启动-CSDN博客

        

 

(2)安装pymongo库  

python中安装 pymongo库参考:[Python3网络爬虫开发实战] 1.5.2-PyMongo的安装 | 静觅

 三、连接MongoDB

        连接 MongoDB 时,我们需要使用 PyMongo 库里面的 MongoClient。一般来说,传入 MongoDB 的 IP 及端口即可,其中第一个参数为地址 host,第二个参数为端口 port(如果不给它传递参数,默认是 27017):

import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)

这样就可以创建 MongoDB 的连接对象了。

另外,MongoClient 的第一个参数 host 还可以直接传入 MongoDB 的连接字符串,它以 mongodb 开头,例如:

client = MongoClient('mongodb://localhost:27017/')

这也可以达到同样的连接效果。

四、指定数据库

        MongoDB 中可以建立多个数据库,接下来我们需要指定操作哪个数据库。这里我们以 test 数据库为例来说明,下一步需要在程序中指定要使用的数据库:

db = client.test

 这里调用 client 的 test 属性即可返回 test 数据库。当然,我们也可以这样指定:

db = client['test']

 五、指定集合

        MongoDB 的每个数据库又包含许多集合(collection),它们类似于关系型数据库中的表。下一步需要指定要操作的集合,这里指定一个集合名称为 students。与指定数据库类似,指定集合也有两种方式:

collection = db.students
# collection = db['students']

六、插入数据

(1) insert 方法

        接下来,便可以插入数据了。对于 students 这个集合,新建一条学生数据,这条数据以字典形式表示:

student = {'id': '20170101','name': 'Jordan','age': 20,'gender': 'male'
}

        这里指定了学生的学号、姓名、年龄和性别。接下来,直接调用 collection 的 insert 方法即可插入数据,代码如下

result = collection.insert(student)
print(result)

在 MongoDB 中,每条数据其实都有一个id 属性来唯一标识。如果没有显式指明该属性,MongoDB 会自动产生一个 ObjectId 类型的id 属性。insert() 方法会在执行后返回_id 值。

运行结果如下:

5932a68615c2606814c91f3d

当然,我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:

student1 = {'id': '20170101','name': 'Jordan','age': 20,'gender': 'male'
}student2 = {'id': '20170202','name': 'Mike','age': 21,'gender': 'male'
}result = collection.insert([student1, student2])
print(result)

返回结果是对应的_id 的集合:

[ObjectId('5932a80115c2606a59e8a048'), ObjectId('5932a80115c2606a59e8a049')]

(2)insert_one() 和 insert_many() 方法

实际上,在 PyMongo 3.x 版本中,官方已经不推荐使用 insert() 方法了。当然,继续使用也没有什么问题。官方推荐使用 insert_one() 和 insert_many() 方法来分别插入单条记录和多条记录,示例如下:

student = {'id': '20170101','name': 'Jordan','age': 20,'gender': 'male'
}result = collection.insert_one(student)
print(result)
print(result.inserted_id)

 

        与 insert() 方法不同,这次返回的是 InsertOneResult 对象,我们可以调用其 inserted_id 属性获取_id。

        对于 insert_many() 方法,我们可以将数据以列表形式传递,示例如下:

student1 = {'id': '20170101','name': 'Jordan','age': 20,'gender': 'male'
}student2 = {'id': '20170202','name': 'Mike','age': 21,'gender': 'male'
}result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)

该方法返回的类型是 InsertManyResult,调用 inserted_ids 属性可以获取插入数据的_id 列表。  

 七、查询

(1)find_one() 

        插入数据后,我们可以利用 find_one() 或 find() 方法进行查询,其中 find_one() 查询得到的是单个结果,find() 则返回一个生成器对象。示例如下:

result = collection.find_one({'name': 'Mike'})
print(type(result))
print(result)

 这里我们查询 name 为 Mike 的数据,它的返回结果是字典类型,运行结果如下:

<class 'dict'>
{'_id': ObjectId('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'Mike', 'age': 21, 'gender': 'male'}

发现,它多了_id 属性,这就是 MongoDB 在插入过程中自动添加的。

(2)ObjectId

此外,我们也可以根据 ObjectId 来查询,此时需要使用 bson 库里面的 objectid:

from bson.objectid import ObjectIdresult = collection.find_one({'_id': ObjectId('593278c115c2602667ec6bae')})
print(result)

其查询结果依然是字典类型,具体如下:

{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}

当然,如果查询结果不存在,则会返回 None。

(3)find()方法

对于多条数据的查询,我们可以使用 find() 方法。例如,这里查找年龄为 20 的数据,示例如下:

results = collection.find({'age': 20})
print(results)
for result in results:print(result)

 运行结果如下:

<pymongo.cursor.Cursor object at 0x1032d5128>
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'Kevin', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'Harden', 'age': 20, 'gender': 'male'}

返回结果是 Cursor 类型,它相当于一个生成器,我们需要遍历取到所有的结果,其中每个结果都是字典类型。

如果要查询年龄大于 20 的数据,则写法如下:

results = collection.find({'age': {'$gt': 20}})

这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号 $gt,意思是大于,键值为 20。

比较符号

符  号含  义示  例
$lt小于{'age': {'$lt': 20}}
$gt大于{'age': {'$gt': 20}}
$lte小于等于{'age': {'$lte': 20}}
$gte大于等于{'age': {'$gte': 20}}
$ne不等于{'age': {'$ne': 20}}
$in在范围内{'age': {'$in': [20, 23]}}
$nin不在范围内{'age': {'$nin': [20, 23]}}

八、计数

 要统计查询结果有多少条数据,可以调用 count() 方法。比如,统计所有数据条数:

count = collection.find().count()
print(count)

 或者统计符合某个条件的数据:

count = collection.find({'age': 20}).count()
print(count)

运行结果是一个数值,即符合条件的数据条数。

九、排序

排序时,直接调用 sort() 方法,并在其中传入排序的字段及升降序标志即可。示例如下:

results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])

运行结果如下:

['Harden', 'Jordan', 'Kevin', 'Mark', 'Mike']

这里我们调用 pymongo.ASCENDING 指定升序。如果要降序排列,可以传入 pymongo.DESCENDING。

十、偏移

         在某些情况下,我们可能想只取某几个元素,这时可以利用 skip() 方法偏移几个位置,比如偏移 2,就忽略前两个元素,得到第三个及以后的元素:

results = collection.find().sort('name', pymongo.ASCENDING).skip(2)
print([result['name'] for result in results])

运行结果如下:

['Kevin', 'Mark', 'Mike']

另外,还可以用 limit() 方法指定要取的结果个数,示例如下:

results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2)
print([result['name'] for result in results])

运行结果如下:

['Kevin', 'Mark']

 如果不使用 limit() 方法,原本会返回三个结果,加了限制后,会截取两个结果返回。

值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,因为这样很可能导致内存溢出。此时可以使用类似如下操作来查询:

from bson.objectid import ObjectId
collection.find({'_id': {'$gt': ObjectId('593278c815c2602678bb2b8d')}})

这时需要记录好上次查询的_id。

十一、更新

(1)update()方法

对于数据更新,我们可以使用 update() 方法,指定更新的条件和更新后的数据即可。例如:

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)

这里我们要更新 name 为 Kevin 的数据的年龄:首先指定查询条件,然后将数据查询出来,修改年龄后调用 update() 方法将原条件和修改后的数据传入。

运行结果如下:

{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

返回结果是字典形式,ok 代表执行成功,nModified 代表影响的数据条数。

另外,我们也可以使用 $set 操作符对数据进行更新,代码如下:

result = collection.update(condition, {'$set': student})

这样可以只更新 student 字典内存在的字段。如果原先还有其他字段,则不会更新,也不会删除。而如果不用 $set 的话,则会把之前的数据全部用 student 字典替换;如果原本存在其他字段,则会被删除。

(2)update_one() 方法和 update_many() 方法

另外,update() 方法其实也是官方不推荐使用的方法。这里也分为 update_one() 方法和 update_many() 方法,用法更加严格,它们的第二个参数需要使用 $ 类型操作符作为字典的键名,示例如下:

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)

这里调用了 update_one() 方法,第二个参数不能再直接传入修改后的字典,而是需要使用 {'$set': student} 这样的形式,其返回结果是 UpdateResult 类型。然后分别调用 matched_count 和 modified_count 属性,可以获得匹配的数据条数和影响的数据条数。

运行结果如下

<pymongo.results.UpdateResult object at 0x10d17b678>
1 0

我们再看一个例子

condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这里指定查询条件为年龄大于 20,然后更新条件为 {'$inc': {'age': 1}},也就是年龄加 1,执行之后会将第一条符合条件的数据年龄加 1。

运行结果如下:

<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1

可以看到匹配条数为 1 条,影响条数也为 1 条。

如果调用 update_many() 方法,则会将所有符合条件的数据都更新,示例如下:

condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这时匹配条数就不再为 1 条了,运行结果如下:

<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3

可以看到,这时所有匹配到的数据都会被更新。

十二、删除

(1) remove() 方法        

删除操作比较简单,直接调用 remove() 方法指定删除的条件即可,此时符合条件的所有数据均会被删除。示例如下:

result = collection.remove({'name': 'Kevin'})
print(result)

运行结果如下:

{'ok': 1, 'n': 1}

(2)delete_one() 和 delete_many()

另外,这里依然存在两个新的推荐方法 ——delete_one() 和 delete_many()。示例如下:

result = collection.delete_one({'name': 'Kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)

运行结果如下:

<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4

        delete_one() 即删除第一条符合条件的数据,delete_many() 即删除所有符合条件的数据。它们的返回结果都是 DeleteResult 类型,可以调用 deleted_count 属性获取删除的数据条数。

十三、其他操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/73159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB+Arduino利用板上的按键控制板上Led灯

几年不使用&#xff0c;之前的知识都忘掉了。需要逐步捡起来。 1 熟悉按键的使用 2熟悉灯的控制 1 电路 我们将通过 MATLAB 的 Arduino 支持包与 Arduino 板通信&#xff0c;读取按键状态并控制 LED 灯的亮灭。 按键&#xff1a;连接到 Arduino 的数字引脚&#xff08;例如…

《深度学习》——YOLOv3详解

文章目录 YOLOv3简介YOLOv3核心原理YOLOv3改进YOLOv3网络结构 YOLOv3简介 YOLOv3&#xff08;You Only Look Once, version 3&#xff09;是一种先进的实时目标检测算法&#xff0c;由 Joseph Redmon 和 Ali Farhadi 开发。它在目标检测领域表现出色&#xff0c;具有速度快、精…

【项目设计】网页版五子棋

文章目录 一、项目介绍1.项目简介2.开发环境3.核心技术4.开发阶段 二、Centos-7.6环境搭建1.安装wget工具2.更换软件源(yum源)3.安装scl工具4.安装epel软件源5.安装lrzsz传输工具6.安装高版本gcc/g编译器7.安装gdb调试器8.安装git9.安装cmake10.安装boost库11.安装Jsoncpp库12.…

在coze工作流中将数据回写到飞书表格

在coze工作流中将数据回写到飞书表格

并查集(竞赛)

一、模型建立 本质就是一个数组&#xff0c;数组的下标对应节点的编号&#xff0c;数组的值对应对应编号的节点的父节点。规定根节点的父节点是自己。 规定三个集合的根节点分别是1 4 6 二、并查集操作并实现 并查集主要操作&#xff1a;查找一个节点的父节点&#xff0c;判…

从扩展黎曼泽塔函数构造物质和时空的结构-7

有了先前关于电荷之间吸引和排斥关系的频率分析图&#xff0c;我们可以按照类似的方法&#xff0c;对磁场做一样的分析&#xff0c;即分析磁体同极相斥&#xff0c;异极相吸的本质。 我们知道上图得以成立的原因在于磁感线&#xff0c;如下图所示的排布方式&#xff0c; 磁体的…

机器学习——一元线性回归(算法实现与评估)

一元线性回归是统计学中最基础的回归分析方法&#xff0c;用于建立两个变量之间的线性关系模型。 1. 模型表达式 一元线性回归的数学模型为&#xff1a; &#xff1a;因变量&#xff08;预测值&#xff09;&#xff1a;自变量&#xff08;输入变量&#xff09;&#xff1a;回…

Ubuntu下用QEMU模拟运行OpenBMC

1、前言 在调试过程中&#xff0c;安装了很多依赖库&#xff0c;具体没有记录。关于kvm&#xff0c;也没理清具体有什么作用。本文仅记录&#xff0c;用QEMU成功的将OpenBMC跑起来的过程&#xff0c;做备忘&#xff0c;也供大家参考。 2、环境信息 VMware Workstation 15 Pro…

Gradle/Maven 本地仓库默认路径迁移 (减少系统磁盘占用)

Gradle 配置环境变量 GRADLE_USER_HOME&#xff0c;如D:/.gradle同时将 %userprofile%/.gradle 移动到配置路径 Maven 修改settings.xml文件&#xff0c;localRepository同时将 %userprofile%/.m2/repository 移动到配置路径 IDEA默认用的bundle maven, 路径为安装目录下 p…

MinGW与使用VScode写C语言适配

压缩包 通过网盘分享的文件&#xff1a;MinGW.zip 链接: https://pan.baidu.com/s/1QB-Zkuk2lCIZuVSHc-5T6A 提取码: 2c2q 需要下载的插件 1.翻译 找到VScode页面&#xff0c;从上数第4个&#xff0c;点击扩展&#xff08;以下通此&#xff09; 搜索---Chinese--点击---安装--o…

【C++初阶】从零开始模拟实现vector(含迭代器失效详细讲解)

目录 1、基本结构 1.1成员变量 1.2无参构造函数 1.3有参构造函数 preserve()的实现 代码部分&#xff1a; push_back()的实现 代码部分&#xff1a; 代码部分&#xff1a; 1.4拷贝构造函数 代码部分&#xff1a; 1.5支持{}初始化的构造函数 代码部分&#xff1a; …

Java算法OJ(13)双指针

目录 1.前言 2.正文 2.1快乐数 2.2盛最多水的容器 2.3有效的三角形的个数 2.4和为s的两个数 2.5三数之和 2.6四数之和 3.小结 1.前言 哈喽大家好吖&#xff0c;今天继续加练算法题目&#xff0c;一共六道双指针&#xff0c;希望能对大家有所帮助&#xff0c;废话不多…

系统架构书单推荐(一)领域驱动设计与面向对象

本文主要是个人在学习过程中所涉猎的一些经典书籍&#xff0c;有些已经阅读完&#xff0c;有些还在阅读中。于我而言&#xff0c;希望追求软件系统设计相关的原则、方法、思想、本质的东西&#xff0c;并希望通过不断的学习、实践和积累&#xff0c;提升自身的知识和认知。希望…

动态规划-01背包

兜兜转转了半天&#xff0c;发现还是Carl写的好。 看过动态规划-基础的读者&#xff0c;大概都清楚。 动态规划是将大问题&#xff0c;分解成子问题。并将子问题的解储存下来&#xff0c;避免重复计算。 而背包问题&#xff0c;就是动态规划延申出来的一个大类。 而01背包&…

使用VS2022编译CEF

前提 选择编译的版本 CEF自动编译&#xff0c;在这里可以看到最新的稳定版和Beta版。 从这里得出&#xff0c;最新的稳定版是134.0.6998.118&#xff0c;对应的cef branch是6998。通过这个信息可以在Build requirements查到相关的软件配置信息。 这里主要看Windows下的编译要…

C++20:玩转 string 的 starts_with 和 ends_with

文章目录 一、背景与动机二、string::starts_with 和 string::ends_with&#xff08;一&#xff09;语法与功能&#xff08;二&#xff09;使用示例1\. 判断字符串开头2\. 判断字符串结尾 &#xff08;三&#xff09;优势 三、string_view::starts_with 和 string_view::ends_w…

智能飞鸟监测 守护高压线安全

飞鸟检测新纪元&#xff1a;视觉分析技术的革新应用 在现代化社会中&#xff0c;飞鸟检测成为了多个领域不可忽视的重要环节。无论是高压线下的安全监测、工厂内的生产秩序维护&#xff0c;还是农业区的作物保护&#xff0c;飞鸟检测都扮演着至关重要的角色。传统的人工检测方…

ADC噪声全面分析 -04- 有效噪声带宽简介

为什么要了解ENBW&#xff1f; 了解模数转换器 (ADC) 噪声可能具有挑战性&#xff0c;即使对于最有经验的模拟设计人员也是如此。 Delta-sigma ADC 具有量化和热噪声的组合&#xff0c;这取决于 ADC 的分辨率、参考电压和输出数据速率 (ODR)。 在系统级别&#xff0c;额外的信…

STM32单片机uCOS-Ⅲ系统10 内存管理

目录 一、内存管理的基本概念 二、内存管理的运作机制 三、内存管理的应用场景 四、内存管理函数接口讲解 1、内存池创建函数 OSMemCreate() 2、内存申请函数 OSMemGet() 3、内存释放函数 OSMemPut() 五、实现 一、内存管理的基本概念 在计算系统中&#xff0c;变量、中…

蓝桥杯2023年第十四届省赛真题-异或和之差

题目来自DOTCPP&#xff1a; 思路&#xff1a; 什么是异或和&#xff1f; ①题目要求我们选择两个不相交的子段&#xff0c;我们可以枚举一个分界线i&#xff0c;子段1在 i 的左边&#xff0c; 子段2在 i 的右边&#xff0c;分别找到子段1和子段2的最大值、最小值。 ②怎么确…