通过导入必要的scikit-learn导入必要的库,加载给定的数据,划分测试集和训练集之后训练预测和评估即可
具体代码如下:
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 标准化数据
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 创建KNN分类器并训练模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)# 使用测试集进行预测
y_pred = knn.predict(X_test)# 输出结果
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
运行结果: